| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnfvelrn |  |-  ( ( F Fn A /\ o e. A ) -> ( F ` o ) e. ran F ) | 
						
							| 2 | 1 | ex |  |-  ( F Fn A -> ( o e. A -> ( F ` o ) e. ran F ) ) | 
						
							| 3 | 2 | adantr |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( o e. A -> ( F ` o ) e. ran F ) ) | 
						
							| 4 |  | fnrnfv |  |-  ( F Fn A -> ran F = { y | E. p e. A y = ( F ` p ) } ) | 
						
							| 5 | 4 | eqabrd |  |-  ( F Fn A -> ( y e. ran F <-> E. p e. A y = ( F ` p ) ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( y e. ran F <-> E. p e. A y = ( F ` p ) ) ) | 
						
							| 7 |  | nfv |  |-  F/ p F Fn A | 
						
							| 8 |  | nfra1 |  |-  F/ p A. p e. A ( ( F ` p ) i^i A ) = { p } | 
						
							| 9 | 7 8 | nfan |  |-  F/ p ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) | 
						
							| 10 |  | nfv |  |-  F/ p A. o e. A ( o e. y <-> y = ( F ` o ) ) | 
						
							| 11 |  | eleq2w2 |  |-  ( y = ( F ` p ) -> ( o e. y <-> o e. ( F ` p ) ) ) | 
						
							| 12 |  | elin |  |-  ( o e. ( ( F ` p ) i^i A ) <-> ( o e. ( F ` p ) /\ o e. A ) ) | 
						
							| 13 | 12 | rbaib |  |-  ( o e. A -> ( o e. ( ( F ` p ) i^i A ) <-> o e. ( F ` p ) ) ) | 
						
							| 14 | 13 | ad2antll |  |-  ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( o e. ( ( F ` p ) i^i A ) <-> o e. ( F ` p ) ) ) | 
						
							| 15 |  | rsp |  |-  ( A. p e. A ( ( F ` p ) i^i A ) = { p } -> ( p e. A -> ( ( F ` p ) i^i A ) = { p } ) ) | 
						
							| 16 |  | eleq2w2 |  |-  ( ( ( F ` p ) i^i A ) = { p } -> ( o e. ( ( F ` p ) i^i A ) <-> o e. { p } ) ) | 
						
							| 17 |  | velsn |  |-  ( o e. { p } <-> o = p ) | 
						
							| 18 |  | equcom |  |-  ( o = p <-> p = o ) | 
						
							| 19 | 17 18 | bitri |  |-  ( o e. { p } <-> p = o ) | 
						
							| 20 | 16 19 | bitrdi |  |-  ( ( ( F ` p ) i^i A ) = { p } -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) | 
						
							| 21 | 15 20 | syl6 |  |-  ( A. p e. A ( ( F ` p ) i^i A ) = { p } -> ( p e. A -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( p e. A -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) ) | 
						
							| 23 | 22 | adantrd |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( ( p e. A /\ o e. A ) -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) ) | 
						
							| 24 | 23 | imp |  |-  ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) | 
						
							| 25 | 14 24 | bitr3d |  |-  ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( o e. ( F ` p ) <-> p = o ) ) | 
						
							| 26 | 11 25 | sylan9bbr |  |-  ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) /\ y = ( F ` p ) ) -> ( o e. y <-> p = o ) ) | 
						
							| 27 | 26 | ex |  |-  ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( y = ( F ` p ) -> ( o e. y <-> p = o ) ) ) | 
						
							| 28 | 27 | anass1rs |  |-  ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ o e. A ) /\ p e. A ) -> ( y = ( F ` p ) -> ( o e. y <-> p = o ) ) ) | 
						
							| 29 | 28 | impr |  |-  ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ o e. A ) /\ ( p e. A /\ y = ( F ` p ) ) ) -> ( o e. y <-> p = o ) ) | 
						
							| 30 | 29 | an32s |  |-  ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) /\ o e. A ) -> ( o e. y <-> p = o ) ) | 
						
							| 31 |  | eqeq1 |  |-  ( y = ( F ` p ) -> ( y = ( F ` o ) <-> ( F ` p ) = ( F ` o ) ) ) | 
						
							| 32 |  | dffn3 |  |-  ( F Fn A <-> F : A --> ran F ) | 
						
							| 33 |  | fvineqsnf1 |  |-  ( ( F : A --> ran F /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> F : A -1-1-> ran F ) | 
						
							| 34 | 32 33 | sylanb |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> F : A -1-1-> ran F ) | 
						
							| 35 |  | dff13 |  |-  ( F : A -1-1-> ran F <-> ( F : A --> ran F /\ A. p e. A A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) | 
						
							| 36 | 34 35 | sylib |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( F : A --> ran F /\ A. p e. A A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) | 
						
							| 37 |  | rsp |  |-  ( A. p e. A A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) -> ( p e. A -> A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) | 
						
							| 38 | 36 37 | simpl2im |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( p e. A -> A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) | 
						
							| 39 |  | rsp |  |-  ( A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) -> ( o e. A -> ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) | 
						
							| 40 | 38 39 | syl6 |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( p e. A -> ( o e. A -> ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) ) | 
						
							| 41 | 40 | imp32 |  |-  ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( ( F ` p ) = ( F ` o ) -> p = o ) ) | 
						
							| 42 |  | fveq2 |  |-  ( p = o -> ( F ` p ) = ( F ` o ) ) | 
						
							| 43 | 41 42 | impbid1 |  |-  ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( ( F ` p ) = ( F ` o ) <-> p = o ) ) | 
						
							| 44 | 31 43 | sylan9bbr |  |-  ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) /\ y = ( F ` p ) ) -> ( y = ( F ` o ) <-> p = o ) ) | 
						
							| 45 | 44 | ex |  |-  ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( y = ( F ` p ) -> ( y = ( F ` o ) <-> p = o ) ) ) | 
						
							| 46 | 45 | anass1rs |  |-  ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ o e. A ) /\ p e. A ) -> ( y = ( F ` p ) -> ( y = ( F ` o ) <-> p = o ) ) ) | 
						
							| 47 | 46 | impr |  |-  ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ o e. A ) /\ ( p e. A /\ y = ( F ` p ) ) ) -> ( y = ( F ` o ) <-> p = o ) ) | 
						
							| 48 | 47 | an32s |  |-  ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) /\ o e. A ) -> ( y = ( F ` o ) <-> p = o ) ) | 
						
							| 49 | 30 48 | bitr4d |  |-  ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) /\ o e. A ) -> ( o e. y <-> y = ( F ` o ) ) ) | 
						
							| 50 | 49 | ex |  |-  ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) -> ( o e. A -> ( o e. y <-> y = ( F ` o ) ) ) ) | 
						
							| 51 | 50 | ralrimiv |  |-  ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) -> A. o e. A ( o e. y <-> y = ( F ` o ) ) ) | 
						
							| 52 | 51 | exp32 |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( p e. A -> ( y = ( F ` p ) -> A. o e. A ( o e. y <-> y = ( F ` o ) ) ) ) ) | 
						
							| 53 | 9 10 52 | rexlimd |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( E. p e. A y = ( F ` p ) -> A. o e. A ( o e. y <-> y = ( F ` o ) ) ) ) | 
						
							| 54 | 6 53 | sylbid |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( y e. ran F -> A. o e. A ( o e. y <-> y = ( F ` o ) ) ) ) | 
						
							| 55 |  | rsp |  |-  ( A. o e. A ( o e. y <-> y = ( F ` o ) ) -> ( o e. A -> ( o e. y <-> y = ( F ` o ) ) ) ) | 
						
							| 56 | 54 55 | syl6 |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( y e. ran F -> ( o e. A -> ( o e. y <-> y = ( F ` o ) ) ) ) ) | 
						
							| 57 | 56 | com23 |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( o e. A -> ( y e. ran F -> ( o e. y <-> y = ( F ` o ) ) ) ) ) | 
						
							| 58 | 57 | ralrimdv |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( o e. A -> A. y e. ran F ( o e. y <-> y = ( F ` o ) ) ) ) | 
						
							| 59 |  | reu6i |  |-  ( ( ( F ` o ) e. ran F /\ A. y e. ran F ( o e. y <-> y = ( F ` o ) ) ) -> E! y e. ran F o e. y ) | 
						
							| 60 | 59 | ex |  |-  ( ( F ` o ) e. ran F -> ( A. y e. ran F ( o e. y <-> y = ( F ` o ) ) -> E! y e. ran F o e. y ) ) | 
						
							| 61 | 3 58 60 | syl6c |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( o e. A -> E! y e. ran F o e. y ) ) | 
						
							| 62 | 61 | ralrimiv |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> A. o e. A E! y e. ran F o e. y ) | 
						
							| 63 |  | nfv |  |-  F/ x q = o | 
						
							| 64 |  | nfv |  |-  F/ y q = o | 
						
							| 65 |  | nfvd |  |-  ( q = o -> F/ y q e. x ) | 
						
							| 66 |  | nfvd |  |-  ( q = o -> F/ x o e. y ) | 
						
							| 67 |  | elequ12 |  |-  ( ( q = o /\ x = y ) -> ( q e. x <-> o e. y ) ) | 
						
							| 68 | 67 | ex |  |-  ( q = o -> ( x = y -> ( q e. x <-> o e. y ) ) ) | 
						
							| 69 | 63 64 65 66 68 | cbvreud |  |-  ( q = o -> ( E! x e. ran F q e. x <-> E! y e. ran F o e. y ) ) | 
						
							| 70 | 69 | cbvralvw |  |-  ( A. q e. A E! x e. ran F q e. x <-> A. o e. A E! y e. ran F o e. y ) | 
						
							| 71 | 62 70 | sylibr |  |-  ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> A. q e. A E! x e. ran F q e. x ) |