| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnfvelrn |
|- ( ( F Fn A /\ o e. A ) -> ( F ` o ) e. ran F ) |
| 2 |
1
|
ex |
|- ( F Fn A -> ( o e. A -> ( F ` o ) e. ran F ) ) |
| 3 |
2
|
adantr |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( o e. A -> ( F ` o ) e. ran F ) ) |
| 4 |
|
fnrnfv |
|- ( F Fn A -> ran F = { y | E. p e. A y = ( F ` p ) } ) |
| 5 |
4
|
eqabrd |
|- ( F Fn A -> ( y e. ran F <-> E. p e. A y = ( F ` p ) ) ) |
| 6 |
5
|
adantr |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( y e. ran F <-> E. p e. A y = ( F ` p ) ) ) |
| 7 |
|
nfv |
|- F/ p F Fn A |
| 8 |
|
nfra1 |
|- F/ p A. p e. A ( ( F ` p ) i^i A ) = { p } |
| 9 |
7 8
|
nfan |
|- F/ p ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) |
| 10 |
|
nfv |
|- F/ p A. o e. A ( o e. y <-> y = ( F ` o ) ) |
| 11 |
|
eleq2w2 |
|- ( y = ( F ` p ) -> ( o e. y <-> o e. ( F ` p ) ) ) |
| 12 |
|
elin |
|- ( o e. ( ( F ` p ) i^i A ) <-> ( o e. ( F ` p ) /\ o e. A ) ) |
| 13 |
12
|
rbaib |
|- ( o e. A -> ( o e. ( ( F ` p ) i^i A ) <-> o e. ( F ` p ) ) ) |
| 14 |
13
|
ad2antll |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( o e. ( ( F ` p ) i^i A ) <-> o e. ( F ` p ) ) ) |
| 15 |
|
rsp |
|- ( A. p e. A ( ( F ` p ) i^i A ) = { p } -> ( p e. A -> ( ( F ` p ) i^i A ) = { p } ) ) |
| 16 |
|
eleq2w2 |
|- ( ( ( F ` p ) i^i A ) = { p } -> ( o e. ( ( F ` p ) i^i A ) <-> o e. { p } ) ) |
| 17 |
|
velsn |
|- ( o e. { p } <-> o = p ) |
| 18 |
|
equcom |
|- ( o = p <-> p = o ) |
| 19 |
17 18
|
bitri |
|- ( o e. { p } <-> p = o ) |
| 20 |
16 19
|
bitrdi |
|- ( ( ( F ` p ) i^i A ) = { p } -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) |
| 21 |
15 20
|
syl6 |
|- ( A. p e. A ( ( F ` p ) i^i A ) = { p } -> ( p e. A -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) ) |
| 22 |
21
|
adantl |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( p e. A -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) ) |
| 23 |
22
|
adantrd |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( ( p e. A /\ o e. A ) -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) ) |
| 24 |
23
|
imp |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) |
| 25 |
14 24
|
bitr3d |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( o e. ( F ` p ) <-> p = o ) ) |
| 26 |
11 25
|
sylan9bbr |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) /\ y = ( F ` p ) ) -> ( o e. y <-> p = o ) ) |
| 27 |
26
|
ex |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( y = ( F ` p ) -> ( o e. y <-> p = o ) ) ) |
| 28 |
27
|
anass1rs |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ o e. A ) /\ p e. A ) -> ( y = ( F ` p ) -> ( o e. y <-> p = o ) ) ) |
| 29 |
28
|
impr |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ o e. A ) /\ ( p e. A /\ y = ( F ` p ) ) ) -> ( o e. y <-> p = o ) ) |
| 30 |
29
|
an32s |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) /\ o e. A ) -> ( o e. y <-> p = o ) ) |
| 31 |
|
eqeq1 |
|- ( y = ( F ` p ) -> ( y = ( F ` o ) <-> ( F ` p ) = ( F ` o ) ) ) |
| 32 |
|
dffn3 |
|- ( F Fn A <-> F : A --> ran F ) |
| 33 |
|
fvineqsnf1 |
|- ( ( F : A --> ran F /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> F : A -1-1-> ran F ) |
| 34 |
32 33
|
sylanb |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> F : A -1-1-> ran F ) |
| 35 |
|
dff13 |
|- ( F : A -1-1-> ran F <-> ( F : A --> ran F /\ A. p e. A A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) |
| 36 |
34 35
|
sylib |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( F : A --> ran F /\ A. p e. A A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) |
| 37 |
|
rsp |
|- ( A. p e. A A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) -> ( p e. A -> A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) |
| 38 |
36 37
|
simpl2im |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( p e. A -> A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) |
| 39 |
|
rsp |
|- ( A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) -> ( o e. A -> ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) |
| 40 |
38 39
|
syl6 |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( p e. A -> ( o e. A -> ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) ) |
| 41 |
40
|
imp32 |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( ( F ` p ) = ( F ` o ) -> p = o ) ) |
| 42 |
|
fveq2 |
|- ( p = o -> ( F ` p ) = ( F ` o ) ) |
| 43 |
41 42
|
impbid1 |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( ( F ` p ) = ( F ` o ) <-> p = o ) ) |
| 44 |
31 43
|
sylan9bbr |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) /\ y = ( F ` p ) ) -> ( y = ( F ` o ) <-> p = o ) ) |
| 45 |
44
|
ex |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( y = ( F ` p ) -> ( y = ( F ` o ) <-> p = o ) ) ) |
| 46 |
45
|
anass1rs |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ o e. A ) /\ p e. A ) -> ( y = ( F ` p ) -> ( y = ( F ` o ) <-> p = o ) ) ) |
| 47 |
46
|
impr |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ o e. A ) /\ ( p e. A /\ y = ( F ` p ) ) ) -> ( y = ( F ` o ) <-> p = o ) ) |
| 48 |
47
|
an32s |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) /\ o e. A ) -> ( y = ( F ` o ) <-> p = o ) ) |
| 49 |
30 48
|
bitr4d |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) /\ o e. A ) -> ( o e. y <-> y = ( F ` o ) ) ) |
| 50 |
49
|
ex |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) -> ( o e. A -> ( o e. y <-> y = ( F ` o ) ) ) ) |
| 51 |
50
|
ralrimiv |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) -> A. o e. A ( o e. y <-> y = ( F ` o ) ) ) |
| 52 |
51
|
exp32 |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( p e. A -> ( y = ( F ` p ) -> A. o e. A ( o e. y <-> y = ( F ` o ) ) ) ) ) |
| 53 |
9 10 52
|
rexlimd |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( E. p e. A y = ( F ` p ) -> A. o e. A ( o e. y <-> y = ( F ` o ) ) ) ) |
| 54 |
6 53
|
sylbid |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( y e. ran F -> A. o e. A ( o e. y <-> y = ( F ` o ) ) ) ) |
| 55 |
|
rsp |
|- ( A. o e. A ( o e. y <-> y = ( F ` o ) ) -> ( o e. A -> ( o e. y <-> y = ( F ` o ) ) ) ) |
| 56 |
54 55
|
syl6 |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( y e. ran F -> ( o e. A -> ( o e. y <-> y = ( F ` o ) ) ) ) ) |
| 57 |
56
|
com23 |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( o e. A -> ( y e. ran F -> ( o e. y <-> y = ( F ` o ) ) ) ) ) |
| 58 |
57
|
ralrimdv |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( o e. A -> A. y e. ran F ( o e. y <-> y = ( F ` o ) ) ) ) |
| 59 |
|
reu6i |
|- ( ( ( F ` o ) e. ran F /\ A. y e. ran F ( o e. y <-> y = ( F ` o ) ) ) -> E! y e. ran F o e. y ) |
| 60 |
59
|
ex |
|- ( ( F ` o ) e. ran F -> ( A. y e. ran F ( o e. y <-> y = ( F ` o ) ) -> E! y e. ran F o e. y ) ) |
| 61 |
3 58 60
|
syl6c |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( o e. A -> E! y e. ran F o e. y ) ) |
| 62 |
61
|
ralrimiv |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> A. o e. A E! y e. ran F o e. y ) |
| 63 |
|
nfv |
|- F/ x q = o |
| 64 |
|
nfv |
|- F/ y q = o |
| 65 |
|
nfvd |
|- ( q = o -> F/ y q e. x ) |
| 66 |
|
nfvd |
|- ( q = o -> F/ x o e. y ) |
| 67 |
|
elequ12 |
|- ( ( q = o /\ x = y ) -> ( q e. x <-> o e. y ) ) |
| 68 |
67
|
ex |
|- ( q = o -> ( x = y -> ( q e. x <-> o e. y ) ) ) |
| 69 |
63 64 65 66 68
|
cbvreud |
|- ( q = o -> ( E! x e. ran F q e. x <-> E! y e. ran F o e. y ) ) |
| 70 |
69
|
cbvralvw |
|- ( A. q e. A E! x e. ran F q e. x <-> A. o e. A E! y e. ran F o e. y ) |
| 71 |
62 70
|
sylibr |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> A. q e. A E! x e. ran F q e. x ) |