Step |
Hyp |
Ref |
Expression |
1 |
|
fnfvelrn |
|- ( ( F Fn A /\ o e. A ) -> ( F ` o ) e. ran F ) |
2 |
1
|
ex |
|- ( F Fn A -> ( o e. A -> ( F ` o ) e. ran F ) ) |
3 |
2
|
adantr |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( o e. A -> ( F ` o ) e. ran F ) ) |
4 |
|
fnrnfv |
|- ( F Fn A -> ran F = { y | E. p e. A y = ( F ` p ) } ) |
5 |
4
|
abeq2d |
|- ( F Fn A -> ( y e. ran F <-> E. p e. A y = ( F ` p ) ) ) |
6 |
5
|
adantr |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( y e. ran F <-> E. p e. A y = ( F ` p ) ) ) |
7 |
|
nfv |
|- F/ p F Fn A |
8 |
|
nfra1 |
|- F/ p A. p e. A ( ( F ` p ) i^i A ) = { p } |
9 |
7 8
|
nfan |
|- F/ p ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) |
10 |
|
nfv |
|- F/ p A. o e. A ( o e. y <-> y = ( F ` o ) ) |
11 |
|
eleq2 |
|- ( y = ( F ` p ) -> ( o e. y <-> o e. ( F ` p ) ) ) |
12 |
|
elin |
|- ( o e. ( ( F ` p ) i^i A ) <-> ( o e. ( F ` p ) /\ o e. A ) ) |
13 |
12
|
rbaib |
|- ( o e. A -> ( o e. ( ( F ` p ) i^i A ) <-> o e. ( F ` p ) ) ) |
14 |
13
|
ad2antll |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( o e. ( ( F ` p ) i^i A ) <-> o e. ( F ` p ) ) ) |
15 |
|
rsp |
|- ( A. p e. A ( ( F ` p ) i^i A ) = { p } -> ( p e. A -> ( ( F ` p ) i^i A ) = { p } ) ) |
16 |
|
eleq2 |
|- ( ( ( F ` p ) i^i A ) = { p } -> ( o e. ( ( F ` p ) i^i A ) <-> o e. { p } ) ) |
17 |
|
velsn |
|- ( o e. { p } <-> o = p ) |
18 |
|
equcom |
|- ( o = p <-> p = o ) |
19 |
17 18
|
bitri |
|- ( o e. { p } <-> p = o ) |
20 |
16 19
|
bitrdi |
|- ( ( ( F ` p ) i^i A ) = { p } -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) |
21 |
15 20
|
syl6 |
|- ( A. p e. A ( ( F ` p ) i^i A ) = { p } -> ( p e. A -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) ) |
22 |
21
|
adantl |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( p e. A -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) ) |
23 |
22
|
adantrd |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( ( p e. A /\ o e. A ) -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) ) |
24 |
23
|
imp |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( o e. ( ( F ` p ) i^i A ) <-> p = o ) ) |
25 |
14 24
|
bitr3d |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( o e. ( F ` p ) <-> p = o ) ) |
26 |
11 25
|
sylan9bbr |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) /\ y = ( F ` p ) ) -> ( o e. y <-> p = o ) ) |
27 |
26
|
ex |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( y = ( F ` p ) -> ( o e. y <-> p = o ) ) ) |
28 |
27
|
anass1rs |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ o e. A ) /\ p e. A ) -> ( y = ( F ` p ) -> ( o e. y <-> p = o ) ) ) |
29 |
28
|
impr |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ o e. A ) /\ ( p e. A /\ y = ( F ` p ) ) ) -> ( o e. y <-> p = o ) ) |
30 |
29
|
an32s |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) /\ o e. A ) -> ( o e. y <-> p = o ) ) |
31 |
|
eqeq1 |
|- ( y = ( F ` p ) -> ( y = ( F ` o ) <-> ( F ` p ) = ( F ` o ) ) ) |
32 |
|
dffn3 |
|- ( F Fn A <-> F : A --> ran F ) |
33 |
|
fvineqsnf1 |
|- ( ( F : A --> ran F /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> F : A -1-1-> ran F ) |
34 |
32 33
|
sylanb |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> F : A -1-1-> ran F ) |
35 |
|
dff13 |
|- ( F : A -1-1-> ran F <-> ( F : A --> ran F /\ A. p e. A A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) |
36 |
34 35
|
sylib |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( F : A --> ran F /\ A. p e. A A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) |
37 |
36
|
simprd |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> A. p e. A A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) ) |
38 |
|
rsp |
|- ( A. p e. A A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) -> ( p e. A -> A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) |
39 |
37 38
|
syl |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( p e. A -> A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) |
40 |
|
rsp |
|- ( A. o e. A ( ( F ` p ) = ( F ` o ) -> p = o ) -> ( o e. A -> ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) |
41 |
39 40
|
syl6 |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( p e. A -> ( o e. A -> ( ( F ` p ) = ( F ` o ) -> p = o ) ) ) ) |
42 |
41
|
imp32 |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( ( F ` p ) = ( F ` o ) -> p = o ) ) |
43 |
|
fveq2 |
|- ( p = o -> ( F ` p ) = ( F ` o ) ) |
44 |
42 43
|
impbid1 |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( ( F ` p ) = ( F ` o ) <-> p = o ) ) |
45 |
31 44
|
sylan9bbr |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) /\ y = ( F ` p ) ) -> ( y = ( F ` o ) <-> p = o ) ) |
46 |
45
|
ex |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ o e. A ) ) -> ( y = ( F ` p ) -> ( y = ( F ` o ) <-> p = o ) ) ) |
47 |
46
|
anass1rs |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ o e. A ) /\ p e. A ) -> ( y = ( F ` p ) -> ( y = ( F ` o ) <-> p = o ) ) ) |
48 |
47
|
impr |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ o e. A ) /\ ( p e. A /\ y = ( F ` p ) ) ) -> ( y = ( F ` o ) <-> p = o ) ) |
49 |
48
|
an32s |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) /\ o e. A ) -> ( y = ( F ` o ) <-> p = o ) ) |
50 |
30 49
|
bitr4d |
|- ( ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) /\ o e. A ) -> ( o e. y <-> y = ( F ` o ) ) ) |
51 |
50
|
ex |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) -> ( o e. A -> ( o e. y <-> y = ( F ` o ) ) ) ) |
52 |
51
|
ralrimiv |
|- ( ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) /\ ( p e. A /\ y = ( F ` p ) ) ) -> A. o e. A ( o e. y <-> y = ( F ` o ) ) ) |
53 |
52
|
exp32 |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( p e. A -> ( y = ( F ` p ) -> A. o e. A ( o e. y <-> y = ( F ` o ) ) ) ) ) |
54 |
9 10 53
|
rexlimd |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( E. p e. A y = ( F ` p ) -> A. o e. A ( o e. y <-> y = ( F ` o ) ) ) ) |
55 |
6 54
|
sylbid |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( y e. ran F -> A. o e. A ( o e. y <-> y = ( F ` o ) ) ) ) |
56 |
|
rsp |
|- ( A. o e. A ( o e. y <-> y = ( F ` o ) ) -> ( o e. A -> ( o e. y <-> y = ( F ` o ) ) ) ) |
57 |
55 56
|
syl6 |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( y e. ran F -> ( o e. A -> ( o e. y <-> y = ( F ` o ) ) ) ) ) |
58 |
57
|
com23 |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( o e. A -> ( y e. ran F -> ( o e. y <-> y = ( F ` o ) ) ) ) ) |
59 |
58
|
ralrimdv |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( o e. A -> A. y e. ran F ( o e. y <-> y = ( F ` o ) ) ) ) |
60 |
|
reu6i |
|- ( ( ( F ` o ) e. ran F /\ A. y e. ran F ( o e. y <-> y = ( F ` o ) ) ) -> E! y e. ran F o e. y ) |
61 |
60
|
ex |
|- ( ( F ` o ) e. ran F -> ( A. y e. ran F ( o e. y <-> y = ( F ` o ) ) -> E! y e. ran F o e. y ) ) |
62 |
3 59 61
|
syl6c |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> ( o e. A -> E! y e. ran F o e. y ) ) |
63 |
62
|
ralrimiv |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> A. o e. A E! y e. ran F o e. y ) |
64 |
|
nfv |
|- F/ x q = o |
65 |
|
nfv |
|- F/ y q = o |
66 |
|
nfvd |
|- ( q = o -> F/ y q e. x ) |
67 |
|
nfvd |
|- ( q = o -> F/ x o e. y ) |
68 |
|
eleq12 |
|- ( ( q = o /\ x = y ) -> ( q e. x <-> o e. y ) ) |
69 |
68
|
ex |
|- ( q = o -> ( x = y -> ( q e. x <-> o e. y ) ) ) |
70 |
64 65 66 67 69
|
cbvreud |
|- ( q = o -> ( E! x e. ran F q e. x <-> E! y e. ran F o e. y ) ) |
71 |
70
|
cbvralvw |
|- ( A. q e. A E! x e. ran F q e. x <-> A. o e. A E! y e. ran F o e. y ) |
72 |
63 71
|
sylibr |
|- ( ( F Fn A /\ A. p e. A ( ( F ` p ) i^i A ) = { p } ) -> A. q e. A E! x e. ran F q e. x ) |