Metamath Proof Explorer


Theorem cbvreud

Description: Deduction used to change bound variables in a restricted existential uniqueness quantifier. (Contributed by ML, 27-Mar-2021)

Ref Expression
Hypotheses cbvreud.1
|- F/ x ph
cbvreud.2
|- F/ y ph
cbvreud.3
|- ( ph -> F/ y ps )
cbvreud.4
|- ( ph -> F/ x ch )
cbvreud.5
|- ( ph -> ( x = y -> ( ps <-> ch ) ) )
Assertion cbvreud
|- ( ph -> ( E! x e. A ps <-> E! y e. A ch ) )

Proof

Step Hyp Ref Expression
1 cbvreud.1
 |-  F/ x ph
2 cbvreud.2
 |-  F/ y ph
3 cbvreud.3
 |-  ( ph -> F/ y ps )
4 cbvreud.4
 |-  ( ph -> F/ x ch )
5 cbvreud.5
 |-  ( ph -> ( x = y -> ( ps <-> ch ) ) )
6 nfvd
 |-  ( ph -> F/ y x e. A )
7 6 3 nfand
 |-  ( ph -> F/ y ( x e. A /\ ps ) )
8 nfvd
 |-  ( ph -> F/ x y e. A )
9 8 4 nfand
 |-  ( ph -> F/ x ( y e. A /\ ch ) )
10 eleq1
 |-  ( x = y -> ( x e. A <-> y e. A ) )
11 10 adantl
 |-  ( ( ph /\ x = y ) -> ( x e. A <-> y e. A ) )
12 5 imp
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
13 11 12 anbi12d
 |-  ( ( ph /\ x = y ) -> ( ( x e. A /\ ps ) <-> ( y e. A /\ ch ) ) )
14 13 ex
 |-  ( ph -> ( x = y -> ( ( x e. A /\ ps ) <-> ( y e. A /\ ch ) ) ) )
15 1 2 7 9 14 cbveud
 |-  ( ph -> ( E! x ( x e. A /\ ps ) <-> E! y ( y e. A /\ ch ) ) )
16 df-reu
 |-  ( E! x e. A ps <-> E! x ( x e. A /\ ps ) )
17 df-reu
 |-  ( E! y e. A ch <-> E! y ( y e. A /\ ch ) )
18 15 16 17 3bitr4g
 |-  ( ph -> ( E! x e. A ps <-> E! y e. A ch ) )