| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvreud.1 |
|- F/ x ph |
| 2 |
|
cbvreud.2 |
|- F/ y ph |
| 3 |
|
cbvreud.3 |
|- ( ph -> F/ y ps ) |
| 4 |
|
cbvreud.4 |
|- ( ph -> F/ x ch ) |
| 5 |
|
cbvreud.5 |
|- ( ph -> ( x = y -> ( ps <-> ch ) ) ) |
| 6 |
|
nfvd |
|- ( ph -> F/ y x e. A ) |
| 7 |
6 3
|
nfand |
|- ( ph -> F/ y ( x e. A /\ ps ) ) |
| 8 |
|
nfvd |
|- ( ph -> F/ x y e. A ) |
| 9 |
8 4
|
nfand |
|- ( ph -> F/ x ( y e. A /\ ch ) ) |
| 10 |
|
eleq1 |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
| 11 |
10
|
adantl |
|- ( ( ph /\ x = y ) -> ( x e. A <-> y e. A ) ) |
| 12 |
5
|
imp |
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
| 13 |
11 12
|
anbi12d |
|- ( ( ph /\ x = y ) -> ( ( x e. A /\ ps ) <-> ( y e. A /\ ch ) ) ) |
| 14 |
13
|
ex |
|- ( ph -> ( x = y -> ( ( x e. A /\ ps ) <-> ( y e. A /\ ch ) ) ) ) |
| 15 |
1 2 7 9 14
|
cbveud |
|- ( ph -> ( E! x ( x e. A /\ ps ) <-> E! y ( y e. A /\ ch ) ) ) |
| 16 |
|
df-reu |
|- ( E! x e. A ps <-> E! x ( x e. A /\ ps ) ) |
| 17 |
|
df-reu |
|- ( E! y e. A ch <-> E! y ( y e. A /\ ch ) ) |
| 18 |
15 16 17
|
3bitr4g |
|- ( ph -> ( E! x e. A ps <-> E! y e. A ch ) ) |