Metamath Proof Explorer


Theorem cbvreud

Description: Deduction used to change bound variables in a restricted existential uniqueness quantifier. (Contributed by ML, 27-Mar-2021)

Ref Expression
Hypotheses cbvreud.1 xφ
cbvreud.2 yφ
cbvreud.3 φyψ
cbvreud.4 φxχ
cbvreud.5 φx=yψχ
Assertion cbvreud φ∃!xAψ∃!yAχ

Proof

Step Hyp Ref Expression
1 cbvreud.1 xφ
2 cbvreud.2 yφ
3 cbvreud.3 φyψ
4 cbvreud.4 φxχ
5 cbvreud.5 φx=yψχ
6 nfvd φyxA
7 6 3 nfand φyxAψ
8 nfvd φxyA
9 8 4 nfand φxyAχ
10 eleq1 x=yxAyA
11 10 adantl φx=yxAyA
12 5 imp φx=yψχ
13 11 12 anbi12d φx=yxAψyAχ
14 13 ex φx=yxAψyAχ
15 1 2 7 9 14 cbveud φ∃!xxAψ∃!yyAχ
16 df-reu ∃!xAψ∃!xxAψ
17 df-reu ∃!yAχ∃!yyAχ
18 15 16 17 3bitr4g φ∃!xAψ∃!yAχ