Step |
Hyp |
Ref |
Expression |
1 |
|
cbvreud.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
cbvreud.2 |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
cbvreud.3 |
⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 ) |
4 |
|
cbvreud.4 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) |
5 |
|
cbvreud.5 |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) |
6 |
|
nfvd |
⊢ ( 𝜑 → Ⅎ 𝑦 𝑥 ∈ 𝐴 ) |
7 |
6 3
|
nfand |
⊢ ( 𝜑 → Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
8 |
|
nfvd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
9 |
8 4
|
nfand |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜒 ) ) |
10 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
12 |
5
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) |
13 |
11 12
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝜒 ) ) ) |
14 |
13
|
ex |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝜒 ) ) ) ) |
15 |
1 2 7 9 14
|
cbveud |
⊢ ( 𝜑 → ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜒 ) ) ) |
16 |
|
df-reu |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
17 |
|
df-reu |
⊢ ( ∃! 𝑦 ∈ 𝐴 𝜒 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜒 ) ) |
18 |
15 16 17
|
3bitr4g |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑦 ∈ 𝐴 𝜒 ) ) |