Metamath Proof Explorer


Theorem cbvreud

Description: Deduction used to change bound variables in a restricted existential uniqueness quantifier. (Contributed by ML, 27-Mar-2021)

Ref Expression
Hypotheses cbvreud.1 𝑥 𝜑
cbvreud.2 𝑦 𝜑
cbvreud.3 ( 𝜑 → Ⅎ 𝑦 𝜓 )
cbvreud.4 ( 𝜑 → Ⅎ 𝑥 𝜒 )
cbvreud.5 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
Assertion cbvreud ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑦𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 cbvreud.1 𝑥 𝜑
2 cbvreud.2 𝑦 𝜑
3 cbvreud.3 ( 𝜑 → Ⅎ 𝑦 𝜓 )
4 cbvreud.4 ( 𝜑 → Ⅎ 𝑥 𝜒 )
5 cbvreud.5 ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) ) )
6 nfvd ( 𝜑 → Ⅎ 𝑦 𝑥𝐴 )
7 6 3 nfand ( 𝜑 → Ⅎ 𝑦 ( 𝑥𝐴𝜓 ) )
8 nfvd ( 𝜑 → Ⅎ 𝑥 𝑦𝐴 )
9 8 4 nfand ( 𝜑 → Ⅎ 𝑥 ( 𝑦𝐴𝜒 ) )
10 eleq1 ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
11 10 adantl ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑥𝐴𝑦𝐴 ) )
12 5 imp ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
13 11 12 anbi12d ( ( 𝜑𝑥 = 𝑦 ) → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑦𝐴𝜒 ) ) )
14 13 ex ( 𝜑 → ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑦𝐴𝜒 ) ) ) )
15 1 2 7 9 14 cbveud ( 𝜑 → ( ∃! 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃! 𝑦 ( 𝑦𝐴𝜒 ) ) )
16 df-reu ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥𝐴𝜓 ) )
17 df-reu ( ∃! 𝑦𝐴 𝜒 ↔ ∃! 𝑦 ( 𝑦𝐴𝜒 ) )
18 15 16 17 3bitr4g ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑦𝐴 𝜒 ) )