Step |
Hyp |
Ref |
Expression |
1 |
|
cbveud.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
cbveud.2 |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
cbveud.3 |
⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 ) |
4 |
|
cbveud.4 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) |
5 |
|
cbveud.5 |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) |
6 |
|
nfvd |
⊢ ( 𝜑 → Ⅎ 𝑦 𝑥 = 𝑧 ) |
7 |
3 6
|
nfbid |
⊢ ( 𝜑 → Ⅎ 𝑦 ( 𝜓 ↔ 𝑥 = 𝑧 ) ) |
8 |
|
nfvd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 = 𝑧 ) |
9 |
4 8
|
nfbid |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜒 ↔ 𝑦 = 𝑧 ) ) |
10 |
|
simpr |
⊢ ( ( 𝑥 = 𝑦 ∧ ( 𝜓 ↔ 𝜒 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
11 |
|
equequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑥 = 𝑦 ∧ ( 𝜓 ↔ 𝜒 ) ) → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) ) |
13 |
10 12
|
bibi12d |
⊢ ( ( 𝑥 = 𝑦 ∧ ( 𝜓 ↔ 𝜒 ) ) → ( ( 𝜓 ↔ 𝑥 = 𝑧 ) ↔ ( 𝜒 ↔ 𝑦 = 𝑧 ) ) ) |
14 |
13
|
ex |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜓 ↔ 𝜒 ) → ( ( 𝜓 ↔ 𝑥 = 𝑧 ) ↔ ( 𝜒 ↔ 𝑦 = 𝑧 ) ) ) ) |
15 |
5 14
|
sylcom |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( ( 𝜓 ↔ 𝑥 = 𝑧 ) ↔ ( 𝜒 ↔ 𝑦 = 𝑧 ) ) ) ) |
16 |
1 2 7 9 15
|
cbv2w |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ( 𝜒 ↔ 𝑦 = 𝑧 ) ) ) |
17 |
16
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑧 ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ↔ ∃ 𝑧 ∀ 𝑦 ( 𝜒 ↔ 𝑦 = 𝑧 ) ) ) |
18 |
|
eu6 |
⊢ ( ∃! 𝑥 𝜓 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜓 ↔ 𝑥 = 𝑧 ) ) |
19 |
|
eu6 |
⊢ ( ∃! 𝑦 𝜒 ↔ ∃ 𝑧 ∀ 𝑦 ( 𝜒 ↔ 𝑦 = 𝑧 ) ) |
20 |
17 18 19
|
3bitr4g |
⊢ ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑦 𝜒 ) ) |