Step |
Hyp |
Ref |
Expression |
1 |
|
cbveud.1 |
|- F/ x ph |
2 |
|
cbveud.2 |
|- F/ y ph |
3 |
|
cbveud.3 |
|- ( ph -> F/ y ps ) |
4 |
|
cbveud.4 |
|- ( ph -> F/ x ch ) |
5 |
|
cbveud.5 |
|- ( ph -> ( x = y -> ( ps <-> ch ) ) ) |
6 |
|
nfvd |
|- ( ph -> F/ y x = z ) |
7 |
3 6
|
nfbid |
|- ( ph -> F/ y ( ps <-> x = z ) ) |
8 |
|
nfvd |
|- ( ph -> F/ x y = z ) |
9 |
4 8
|
nfbid |
|- ( ph -> F/ x ( ch <-> y = z ) ) |
10 |
|
simpr |
|- ( ( x = y /\ ( ps <-> ch ) ) -> ( ps <-> ch ) ) |
11 |
|
equequ1 |
|- ( x = y -> ( x = z <-> y = z ) ) |
12 |
11
|
adantr |
|- ( ( x = y /\ ( ps <-> ch ) ) -> ( x = z <-> y = z ) ) |
13 |
10 12
|
bibi12d |
|- ( ( x = y /\ ( ps <-> ch ) ) -> ( ( ps <-> x = z ) <-> ( ch <-> y = z ) ) ) |
14 |
13
|
ex |
|- ( x = y -> ( ( ps <-> ch ) -> ( ( ps <-> x = z ) <-> ( ch <-> y = z ) ) ) ) |
15 |
5 14
|
sylcom |
|- ( ph -> ( x = y -> ( ( ps <-> x = z ) <-> ( ch <-> y = z ) ) ) ) |
16 |
1 2 7 9 15
|
cbv2w |
|- ( ph -> ( A. x ( ps <-> x = z ) <-> A. y ( ch <-> y = z ) ) ) |
17 |
16
|
exbidv |
|- ( ph -> ( E. z A. x ( ps <-> x = z ) <-> E. z A. y ( ch <-> y = z ) ) ) |
18 |
|
eu6 |
|- ( E! x ps <-> E. z A. x ( ps <-> x = z ) ) |
19 |
|
eu6 |
|- ( E! y ch <-> E. z A. y ( ch <-> y = z ) ) |
20 |
17 18 19
|
3bitr4g |
|- ( ph -> ( E! x ps <-> E! y ch ) ) |