Metamath Proof Explorer


Theorem cbveud

Description: Deduction used to change bound variables in an existential uniqueness quantifier, using implicit substitution. (Contributed by ML, 27-Mar-2021)

Ref Expression
Hypotheses cbveud.1 xφ
cbveud.2 yφ
cbveud.3 φyψ
cbveud.4 φxχ
cbveud.5 φx=yψχ
Assertion cbveud φ∃!xψ∃!yχ

Proof

Step Hyp Ref Expression
1 cbveud.1 xφ
2 cbveud.2 yφ
3 cbveud.3 φyψ
4 cbveud.4 φxχ
5 cbveud.5 φx=yψχ
6 nfvd φyx=z
7 3 6 nfbid φyψx=z
8 nfvd φxy=z
9 4 8 nfbid φxχy=z
10 simpr x=yψχψχ
11 equequ1 x=yx=zy=z
12 11 adantr x=yψχx=zy=z
13 10 12 bibi12d x=yψχψx=zχy=z
14 13 ex x=yψχψx=zχy=z
15 5 14 sylcom φx=yψx=zχy=z
16 1 2 7 9 15 cbv2w φxψx=zyχy=z
17 16 exbidv φzxψx=zzyχy=z
18 eu6 ∃!xψzxψx=z
19 eu6 ∃!yχzyχy=z
20 17 18 19 3bitr4g φ∃!xψ∃!yχ