Metamath Proof Explorer


Theorem fvineqsneu

Description: A theorem about functions where the image of every point intersects the domain only at that point. (Contributed by ML, 27-Mar-2021)

Ref Expression
Assertion fvineqsneu ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ∀ 𝑞𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑞𝑥 )

Proof

Step Hyp Ref Expression
1 fnfvelrn ( ( 𝐹 Fn 𝐴𝑜𝐴 ) → ( 𝐹𝑜 ) ∈ ran 𝐹 )
2 1 ex ( 𝐹 Fn 𝐴 → ( 𝑜𝐴 → ( 𝐹𝑜 ) ∈ ran 𝐹 ) )
3 2 adantr ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑜𝐴 → ( 𝐹𝑜 ) ∈ ran 𝐹 ) )
4 fnrnfv ( 𝐹 Fn 𝐴 → ran 𝐹 = { 𝑦 ∣ ∃ 𝑝𝐴 𝑦 = ( 𝐹𝑝 ) } )
5 4 abeq2d ( 𝐹 Fn 𝐴 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑝𝐴 𝑦 = ( 𝐹𝑝 ) ) )
6 5 adantr ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑝𝐴 𝑦 = ( 𝐹𝑝 ) ) )
7 nfv 𝑝 𝐹 Fn 𝐴
8 nfra1 𝑝𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 }
9 7 8 nfan 𝑝 ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } )
10 nfv 𝑝𝑜𝐴 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) )
11 eleq2 ( 𝑦 = ( 𝐹𝑝 ) → ( 𝑜𝑦𝑜 ∈ ( 𝐹𝑝 ) ) )
12 elin ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ ( 𝑜 ∈ ( 𝐹𝑝 ) ∧ 𝑜𝐴 ) )
13 12 rbaib ( 𝑜𝐴 → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑜 ∈ ( 𝐹𝑝 ) ) )
14 13 ad2antll ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑜 ∈ ( 𝐹𝑝 ) ) )
15 rsp ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝𝐴 → ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) )
16 eleq2 ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑜 ∈ { 𝑝 } ) )
17 velsn ( 𝑜 ∈ { 𝑝 } ↔ 𝑜 = 𝑝 )
18 equcom ( 𝑜 = 𝑝𝑝 = 𝑜 )
19 17 18 bitri ( 𝑜 ∈ { 𝑝 } ↔ 𝑝 = 𝑜 )
20 16 19 bitrdi ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑝 = 𝑜 ) )
21 15 20 syl6 ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝𝐴 → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑝 = 𝑜 ) ) )
22 21 adantl ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑝𝐴 → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑝 = 𝑜 ) ) )
23 22 adantrd ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( ( 𝑝𝐴𝑜𝐴 ) → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑝 = 𝑜 ) ) )
24 23 imp ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑝 = 𝑜 ) )
25 14 24 bitr3d ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) → ( 𝑜 ∈ ( 𝐹𝑝 ) ↔ 𝑝 = 𝑜 ) )
26 11 25 sylan9bbr ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) ∧ 𝑦 = ( 𝐹𝑝 ) ) → ( 𝑜𝑦𝑝 = 𝑜 ) )
27 26 ex ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) → ( 𝑦 = ( 𝐹𝑝 ) → ( 𝑜𝑦𝑝 = 𝑜 ) ) )
28 27 anass1rs ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑜𝐴 ) ∧ 𝑝𝐴 ) → ( 𝑦 = ( 𝐹𝑝 ) → ( 𝑜𝑦𝑝 = 𝑜 ) ) )
29 28 impr ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑜𝐴 ) ∧ ( 𝑝𝐴𝑦 = ( 𝐹𝑝 ) ) ) → ( 𝑜𝑦𝑝 = 𝑜 ) )
30 29 an32s ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑦 = ( 𝐹𝑝 ) ) ) ∧ 𝑜𝐴 ) → ( 𝑜𝑦𝑝 = 𝑜 ) )
31 eqeq1 ( 𝑦 = ( 𝐹𝑝 ) → ( 𝑦 = ( 𝐹𝑜 ) ↔ ( 𝐹𝑝 ) = ( 𝐹𝑜 ) ) )
32 dffn3 ( 𝐹 Fn 𝐴𝐹 : 𝐴 ⟶ ran 𝐹 )
33 fvineqsnf1 ( ( 𝐹 : 𝐴 ⟶ ran 𝐹 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → 𝐹 : 𝐴1-1→ ran 𝐹 )
34 32 33 sylanb ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → 𝐹 : 𝐴1-1→ ran 𝐹 )
35 dff13 ( 𝐹 : 𝐴1-1→ ran 𝐹 ↔ ( 𝐹 : 𝐴 ⟶ ran 𝐹 ∧ ∀ 𝑝𝐴𝑜𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) ) )
36 34 35 sylib ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝐹 : 𝐴 ⟶ ran 𝐹 ∧ ∀ 𝑝𝐴𝑜𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) ) )
37 36 simprd ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ∀ 𝑝𝐴𝑜𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) )
38 rsp ( ∀ 𝑝𝐴𝑜𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) → ( 𝑝𝐴 → ∀ 𝑜𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) ) )
39 37 38 syl ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑝𝐴 → ∀ 𝑜𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) ) )
40 rsp ( ∀ 𝑜𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) → ( 𝑜𝐴 → ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) ) )
41 39 40 syl6 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑝𝐴 → ( 𝑜𝐴 → ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) ) ) )
42 41 imp32 ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) → ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) )
43 fveq2 ( 𝑝 = 𝑜 → ( 𝐹𝑝 ) = ( 𝐹𝑜 ) )
44 42 43 impbid1 ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) → ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) ↔ 𝑝 = 𝑜 ) )
45 31 44 sylan9bbr ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) ∧ 𝑦 = ( 𝐹𝑝 ) ) → ( 𝑦 = ( 𝐹𝑜 ) ↔ 𝑝 = 𝑜 ) )
46 45 ex ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) → ( 𝑦 = ( 𝐹𝑝 ) → ( 𝑦 = ( 𝐹𝑜 ) ↔ 𝑝 = 𝑜 ) ) )
47 46 anass1rs ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑜𝐴 ) ∧ 𝑝𝐴 ) → ( 𝑦 = ( 𝐹𝑝 ) → ( 𝑦 = ( 𝐹𝑜 ) ↔ 𝑝 = 𝑜 ) ) )
48 47 impr ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑜𝐴 ) ∧ ( 𝑝𝐴𝑦 = ( 𝐹𝑝 ) ) ) → ( 𝑦 = ( 𝐹𝑜 ) ↔ 𝑝 = 𝑜 ) )
49 48 an32s ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑦 = ( 𝐹𝑝 ) ) ) ∧ 𝑜𝐴 ) → ( 𝑦 = ( 𝐹𝑜 ) ↔ 𝑝 = 𝑜 ) )
50 30 49 bitr4d ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑦 = ( 𝐹𝑝 ) ) ) ∧ 𝑜𝐴 ) → ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) )
51 50 ex ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑦 = ( 𝐹𝑝 ) ) ) → ( 𝑜𝐴 → ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) )
52 51 ralrimiv ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑦 = ( 𝐹𝑝 ) ) ) → ∀ 𝑜𝐴 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) )
53 52 exp32 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑝𝐴 → ( 𝑦 = ( 𝐹𝑝 ) → ∀ 𝑜𝐴 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) ) )
54 9 10 53 rexlimd ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( ∃ 𝑝𝐴 𝑦 = ( 𝐹𝑝 ) → ∀ 𝑜𝐴 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) )
55 6 54 sylbid ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑦 ∈ ran 𝐹 → ∀ 𝑜𝐴 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) )
56 rsp ( ∀ 𝑜𝐴 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) → ( 𝑜𝐴 → ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) )
57 55 56 syl6 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑦 ∈ ran 𝐹 → ( 𝑜𝐴 → ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) ) )
58 57 com23 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑜𝐴 → ( 𝑦 ∈ ran 𝐹 → ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) ) )
59 58 ralrimdv ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑜𝐴 → ∀ 𝑦 ∈ ran 𝐹 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) )
60 reu6i ( ( ( 𝐹𝑜 ) ∈ ran 𝐹 ∧ ∀ 𝑦 ∈ ran 𝐹 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) → ∃! 𝑦 ∈ ran 𝐹 𝑜𝑦 )
61 60 ex ( ( 𝐹𝑜 ) ∈ ran 𝐹 → ( ∀ 𝑦 ∈ ran 𝐹 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) → ∃! 𝑦 ∈ ran 𝐹 𝑜𝑦 ) )
62 3 59 61 syl6c ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑜𝐴 → ∃! 𝑦 ∈ ran 𝐹 𝑜𝑦 ) )
63 62 ralrimiv ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ∀ 𝑜𝐴 ∃! 𝑦 ∈ ran 𝐹 𝑜𝑦 )
64 nfv 𝑥 𝑞 = 𝑜
65 nfv 𝑦 𝑞 = 𝑜
66 nfvd ( 𝑞 = 𝑜 → Ⅎ 𝑦 𝑞𝑥 )
67 nfvd ( 𝑞 = 𝑜 → Ⅎ 𝑥 𝑜𝑦 )
68 eleq12 ( ( 𝑞 = 𝑜𝑥 = 𝑦 ) → ( 𝑞𝑥𝑜𝑦 ) )
69 68 ex ( 𝑞 = 𝑜 → ( 𝑥 = 𝑦 → ( 𝑞𝑥𝑜𝑦 ) ) )
70 64 65 66 67 69 cbvreud ( 𝑞 = 𝑜 → ( ∃! 𝑥 ∈ ran 𝐹 𝑞𝑥 ↔ ∃! 𝑦 ∈ ran 𝐹 𝑜𝑦 ) )
71 70 cbvralvw ( ∀ 𝑞𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑞𝑥 ↔ ∀ 𝑜𝐴 ∃! 𝑦 ∈ ran 𝐹 𝑜𝑦 )
72 63 71 sylibr ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ∀ 𝑞𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑞𝑥 )