Metamath Proof Explorer


Theorem fvineqsneu

Description: A theorem about functions where the image of every point intersects the domain only at that point. (Contributed by ML, 27-Mar-2021)

Ref Expression
Assertion fvineqsneu ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ∀ 𝑞𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑞𝑥 )

Proof

Step Hyp Ref Expression
1 fnfvelrn ( ( 𝐹 Fn 𝐴𝑜𝐴 ) → ( 𝐹𝑜 ) ∈ ran 𝐹 )
2 1 ex ( 𝐹 Fn 𝐴 → ( 𝑜𝐴 → ( 𝐹𝑜 ) ∈ ran 𝐹 ) )
3 2 adantr ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑜𝐴 → ( 𝐹𝑜 ) ∈ ran 𝐹 ) )
4 fnrnfv ( 𝐹 Fn 𝐴 → ran 𝐹 = { 𝑦 ∣ ∃ 𝑝𝐴 𝑦 = ( 𝐹𝑝 ) } )
5 4 eqabrd ( 𝐹 Fn 𝐴 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑝𝐴 𝑦 = ( 𝐹𝑝 ) ) )
6 5 adantr ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑝𝐴 𝑦 = ( 𝐹𝑝 ) ) )
7 nfv 𝑝 𝐹 Fn 𝐴
8 nfra1 𝑝𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 }
9 7 8 nfan 𝑝 ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } )
10 nfv 𝑝𝑜𝐴 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) )
11 eleq2w2 ( 𝑦 = ( 𝐹𝑝 ) → ( 𝑜𝑦𝑜 ∈ ( 𝐹𝑝 ) ) )
12 elin ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ ( 𝑜 ∈ ( 𝐹𝑝 ) ∧ 𝑜𝐴 ) )
13 12 rbaib ( 𝑜𝐴 → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑜 ∈ ( 𝐹𝑝 ) ) )
14 13 ad2antll ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑜 ∈ ( 𝐹𝑝 ) ) )
15 rsp ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝𝐴 → ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) )
16 eleq2w2 ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑜 ∈ { 𝑝 } ) )
17 velsn ( 𝑜 ∈ { 𝑝 } ↔ 𝑜 = 𝑝 )
18 equcom ( 𝑜 = 𝑝𝑝 = 𝑜 )
19 17 18 bitri ( 𝑜 ∈ { 𝑝 } ↔ 𝑝 = 𝑜 )
20 16 19 bitrdi ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑝 = 𝑜 ) )
21 15 20 syl6 ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝𝐴 → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑝 = 𝑜 ) ) )
22 21 adantl ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑝𝐴 → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑝 = 𝑜 ) ) )
23 22 adantrd ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( ( 𝑝𝐴𝑜𝐴 ) → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑝 = 𝑜 ) ) )
24 23 imp ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) → ( 𝑜 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑝 = 𝑜 ) )
25 14 24 bitr3d ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) → ( 𝑜 ∈ ( 𝐹𝑝 ) ↔ 𝑝 = 𝑜 ) )
26 11 25 sylan9bbr ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) ∧ 𝑦 = ( 𝐹𝑝 ) ) → ( 𝑜𝑦𝑝 = 𝑜 ) )
27 26 ex ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) → ( 𝑦 = ( 𝐹𝑝 ) → ( 𝑜𝑦𝑝 = 𝑜 ) ) )
28 27 anass1rs ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑜𝐴 ) ∧ 𝑝𝐴 ) → ( 𝑦 = ( 𝐹𝑝 ) → ( 𝑜𝑦𝑝 = 𝑜 ) ) )
29 28 impr ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑜𝐴 ) ∧ ( 𝑝𝐴𝑦 = ( 𝐹𝑝 ) ) ) → ( 𝑜𝑦𝑝 = 𝑜 ) )
30 29 an32s ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑦 = ( 𝐹𝑝 ) ) ) ∧ 𝑜𝐴 ) → ( 𝑜𝑦𝑝 = 𝑜 ) )
31 eqeq1 ( 𝑦 = ( 𝐹𝑝 ) → ( 𝑦 = ( 𝐹𝑜 ) ↔ ( 𝐹𝑝 ) = ( 𝐹𝑜 ) ) )
32 dffn3 ( 𝐹 Fn 𝐴𝐹 : 𝐴 ⟶ ran 𝐹 )
33 fvineqsnf1 ( ( 𝐹 : 𝐴 ⟶ ran 𝐹 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → 𝐹 : 𝐴1-1→ ran 𝐹 )
34 32 33 sylanb ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → 𝐹 : 𝐴1-1→ ran 𝐹 )
35 dff13 ( 𝐹 : 𝐴1-1→ ran 𝐹 ↔ ( 𝐹 : 𝐴 ⟶ ran 𝐹 ∧ ∀ 𝑝𝐴𝑜𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) ) )
36 34 35 sylib ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝐹 : 𝐴 ⟶ ran 𝐹 ∧ ∀ 𝑝𝐴𝑜𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) ) )
37 rsp ( ∀ 𝑝𝐴𝑜𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) → ( 𝑝𝐴 → ∀ 𝑜𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) ) )
38 36 37 simpl2im ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑝𝐴 → ∀ 𝑜𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) ) )
39 rsp ( ∀ 𝑜𝐴 ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) → ( 𝑜𝐴 → ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) ) )
40 38 39 syl6 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑝𝐴 → ( 𝑜𝐴 → ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) ) ) )
41 40 imp32 ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) → ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) → 𝑝 = 𝑜 ) )
42 fveq2 ( 𝑝 = 𝑜 → ( 𝐹𝑝 ) = ( 𝐹𝑜 ) )
43 41 42 impbid1 ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) → ( ( 𝐹𝑝 ) = ( 𝐹𝑜 ) ↔ 𝑝 = 𝑜 ) )
44 31 43 sylan9bbr ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) ∧ 𝑦 = ( 𝐹𝑝 ) ) → ( 𝑦 = ( 𝐹𝑜 ) ↔ 𝑝 = 𝑜 ) )
45 44 ex ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑜𝐴 ) ) → ( 𝑦 = ( 𝐹𝑝 ) → ( 𝑦 = ( 𝐹𝑜 ) ↔ 𝑝 = 𝑜 ) ) )
46 45 anass1rs ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑜𝐴 ) ∧ 𝑝𝐴 ) → ( 𝑦 = ( 𝐹𝑝 ) → ( 𝑦 = ( 𝐹𝑜 ) ↔ 𝑝 = 𝑜 ) ) )
47 46 impr ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑜𝐴 ) ∧ ( 𝑝𝐴𝑦 = ( 𝐹𝑝 ) ) ) → ( 𝑦 = ( 𝐹𝑜 ) ↔ 𝑝 = 𝑜 ) )
48 47 an32s ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑦 = ( 𝐹𝑝 ) ) ) ∧ 𝑜𝐴 ) → ( 𝑦 = ( 𝐹𝑜 ) ↔ 𝑝 = 𝑜 ) )
49 30 48 bitr4d ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑦 = ( 𝐹𝑝 ) ) ) ∧ 𝑜𝐴 ) → ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) )
50 49 ex ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑦 = ( 𝐹𝑝 ) ) ) → ( 𝑜𝐴 → ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) )
51 50 ralrimiv ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑝𝐴𝑦 = ( 𝐹𝑝 ) ) ) → ∀ 𝑜𝐴 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) )
52 51 exp32 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑝𝐴 → ( 𝑦 = ( 𝐹𝑝 ) → ∀ 𝑜𝐴 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) ) )
53 9 10 52 rexlimd ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( ∃ 𝑝𝐴 𝑦 = ( 𝐹𝑝 ) → ∀ 𝑜𝐴 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) )
54 6 53 sylbid ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑦 ∈ ran 𝐹 → ∀ 𝑜𝐴 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) )
55 rsp ( ∀ 𝑜𝐴 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) → ( 𝑜𝐴 → ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) )
56 54 55 syl6 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑦 ∈ ran 𝐹 → ( 𝑜𝐴 → ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) ) )
57 56 com23 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑜𝐴 → ( 𝑦 ∈ ran 𝐹 → ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) ) )
58 57 ralrimdv ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑜𝐴 → ∀ 𝑦 ∈ ran 𝐹 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) )
59 reu6i ( ( ( 𝐹𝑜 ) ∈ ran 𝐹 ∧ ∀ 𝑦 ∈ ran 𝐹 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) ) → ∃! 𝑦 ∈ ran 𝐹 𝑜𝑦 )
60 59 ex ( ( 𝐹𝑜 ) ∈ ran 𝐹 → ( ∀ 𝑦 ∈ ran 𝐹 ( 𝑜𝑦𝑦 = ( 𝐹𝑜 ) ) → ∃! 𝑦 ∈ ran 𝐹 𝑜𝑦 ) )
61 3 58 60 syl6c ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑜𝐴 → ∃! 𝑦 ∈ ran 𝐹 𝑜𝑦 ) )
62 61 ralrimiv ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ∀ 𝑜𝐴 ∃! 𝑦 ∈ ran 𝐹 𝑜𝑦 )
63 nfv 𝑥 𝑞 = 𝑜
64 nfv 𝑦 𝑞 = 𝑜
65 nfvd ( 𝑞 = 𝑜 → Ⅎ 𝑦 𝑞𝑥 )
66 nfvd ( 𝑞 = 𝑜 → Ⅎ 𝑥 𝑜𝑦 )
67 elequ12 ( ( 𝑞 = 𝑜𝑥 = 𝑦 ) → ( 𝑞𝑥𝑜𝑦 ) )
68 67 ex ( 𝑞 = 𝑜 → ( 𝑥 = 𝑦 → ( 𝑞𝑥𝑜𝑦 ) ) )
69 63 64 65 66 68 cbvreud ( 𝑞 = 𝑜 → ( ∃! 𝑥 ∈ ran 𝐹 𝑞𝑥 ↔ ∃! 𝑦 ∈ ran 𝐹 𝑜𝑦 ) )
70 69 cbvralvw ( ∀ 𝑞𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑞𝑥 ↔ ∀ 𝑜𝐴 ∃! 𝑦 ∈ ran 𝐹 𝑜𝑦 )
71 62 70 sylibr ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ∀ 𝑞𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑞𝑥 )