Metamath Proof Explorer


Theorem fvineqsneq

Description: A theorem about functions where the image of every point intersects the domain only at that point. (Contributed by ML, 28-Mar-2021)

Ref Expression
Assertion fvineqsneq ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑍 ⊆ ran 𝐹𝐴 𝑍 ) ) → 𝑍 = ran 𝐹 )

Proof

Step Hyp Ref Expression
1 pssnel ( 𝑍 ⊊ ran 𝐹 → ∃ 𝑥 ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥𝑍 ) )
2 1 adantl ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥𝑍 ) )
3 df-rex ( ∃ 𝑥 ∈ ran 𝐹 ¬ 𝑥𝑍 ↔ ∃ 𝑥 ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥𝑍 ) )
4 2 3 sylibr ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ∈ ran 𝐹 ¬ 𝑥𝑍 )
5 fnrnfv ( 𝐹 Fn 𝐴 → ran 𝐹 = { 𝑥 ∣ ∃ 𝑝𝐴 𝑥 = ( 𝐹𝑝 ) } )
6 5 abeq2d ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ran 𝐹 ↔ ∃ 𝑝𝐴 𝑥 = ( 𝐹𝑝 ) ) )
7 6 biimpd ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ran 𝐹 → ∃ 𝑝𝐴 𝑥 = ( 𝐹𝑝 ) ) )
8 7 ralrimiv ( 𝐹 Fn 𝐴 → ∀ 𝑥 ∈ ran 𝐹𝑝𝐴 𝑥 = ( 𝐹𝑝 ) )
9 8 adantr ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ∀ 𝑥 ∈ ran 𝐹𝑝𝐴 𝑥 = ( 𝐹𝑝 ) )
10 9 adantr ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑥 ∈ ran 𝐹𝑝𝐴 𝑥 = ( 𝐹𝑝 ) )
11 r19.29r ( ( ∃ 𝑥 ∈ ran 𝐹 ¬ 𝑥𝑍 ∧ ∀ 𝑥 ∈ ran 𝐹𝑝𝐴 𝑥 = ( 𝐹𝑝 ) ) → ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥𝑍 ∧ ∃ 𝑝𝐴 𝑥 = ( 𝐹𝑝 ) ) )
12 4 10 11 syl2anc ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥𝑍 ∧ ∃ 𝑝𝐴 𝑥 = ( 𝐹𝑝 ) ) )
13 nfra1 𝑝𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 }
14 rsp ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝𝐴 → ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) )
15 vsnid 𝑝 ∈ { 𝑝 }
16 eleq2 ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) ↔ 𝑝 ∈ { 𝑝 } ) )
17 15 16 mpbiri ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → 𝑝 ∈ ( ( 𝐹𝑝 ) ∩ 𝐴 ) )
18 17 elin1d ( ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → 𝑝 ∈ ( 𝐹𝑝 ) )
19 14 18 syl6 ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝𝐴𝑝 ∈ ( 𝐹𝑝 ) ) )
20 19 adantr ( ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ 𝑥 = ( 𝐹𝑝 ) ) → ( 𝑝𝐴𝑝 ∈ ( 𝐹𝑝 ) ) )
21 eleq2 ( 𝑥 = ( 𝐹𝑝 ) → ( 𝑝𝑥𝑝 ∈ ( 𝐹𝑝 ) ) )
22 21 adantl ( ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ 𝑥 = ( 𝐹𝑝 ) ) → ( 𝑝𝑥𝑝 ∈ ( 𝐹𝑝 ) ) )
23 20 22 sylibrd ( ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ 𝑥 = ( 𝐹𝑝 ) ) → ( 𝑝𝐴𝑝𝑥 ) )
24 23 ex ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑥 = ( 𝐹𝑝 ) → ( 𝑝𝐴𝑝𝑥 ) ) )
25 24 com23 ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝𝐴 → ( 𝑥 = ( 𝐹𝑝 ) → 𝑝𝑥 ) ) )
26 13 25 reximdai ( ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( ∃ 𝑝𝐴 𝑥 = ( 𝐹𝑝 ) → ∃ 𝑝𝐴 𝑝𝑥 ) )
27 26 adantl ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( ∃ 𝑝𝐴 𝑥 = ( 𝐹𝑝 ) → ∃ 𝑝𝐴 𝑝𝑥 ) )
28 27 adantr ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∃ 𝑝𝐴 𝑥 = ( 𝐹𝑝 ) → ∃ 𝑝𝐴 𝑝𝑥 ) )
29 28 anim2d ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ( ¬ 𝑥𝑍 ∧ ∃ 𝑝𝐴 𝑥 = ( 𝐹𝑝 ) ) → ( ¬ 𝑥𝑍 ∧ ∃ 𝑝𝐴 𝑝𝑥 ) ) )
30 29 reximdv ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥𝑍 ∧ ∃ 𝑝𝐴 𝑥 = ( 𝐹𝑝 ) ) → ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥𝑍 ∧ ∃ 𝑝𝐴 𝑝𝑥 ) ) )
31 12 30 mpd ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥𝑍 ∧ ∃ 𝑝𝐴 𝑝𝑥 ) )
32 ancom ( ( ¬ 𝑥𝑍 ∧ ∃ 𝑝𝐴 𝑝𝑥 ) ↔ ( ∃ 𝑝𝐴 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) )
33 r19.41v ( ∃ 𝑝𝐴 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) ↔ ( ∃ 𝑝𝐴 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) )
34 32 33 bitr4i ( ( ¬ 𝑥𝑍 ∧ ∃ 𝑝𝐴 𝑝𝑥 ) ↔ ∃ 𝑝𝐴 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) )
35 34 rexbii ( ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥𝑍 ∧ ∃ 𝑝𝐴 𝑝𝑥 ) ↔ ∃ 𝑥 ∈ ran 𝐹𝑝𝐴 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) )
36 31 35 sylib ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ∈ ran 𝐹𝑝𝐴 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) )
37 rexcom ( ∃ 𝑝𝐴𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) ↔ ∃ 𝑥 ∈ ran 𝐹𝑝𝐴 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) )
38 36 37 sylibr ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝𝐴𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) )
39 nfre1 𝑥𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 )
40 39 19.3 ( ∀ 𝑥𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) ↔ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) )
41 alral ( ∀ 𝑥𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ∀ 𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) )
42 40 41 sylbir ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ∀ 𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) )
43 42 reximi ( ∃ 𝑝𝐴𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ∃ 𝑝𝐴𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) )
44 38 43 syl ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝𝐴𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) )
45 nfv 𝑝 𝐹 Fn 𝐴
46 45 13 nfan 𝑝 ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } )
47 nfv 𝑝 𝑍 ⊊ ran 𝐹
48 46 47 nfan 𝑝 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 )
49 nfv 𝑥 ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ 𝑝𝐴 )
50 fvineqsneu ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ∀ 𝑝𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑝𝑥 )
51 50 adantr ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑝𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑝𝑥 )
52 rsp ( ∀ 𝑝𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑝𝑥 → ( 𝑝𝐴 → ∃! 𝑥 ∈ ran 𝐹 𝑝𝑥 ) )
53 51 52 syl ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( 𝑝𝐴 → ∃! 𝑥 ∈ ran 𝐹 𝑝𝑥 ) )
54 53 adantrd ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ( 𝑝𝐴𝑥 ∈ ran 𝐹 ) → ∃! 𝑥 ∈ ran 𝐹 𝑝𝑥 ) )
55 54 imp ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ( 𝑝𝐴𝑥 ∈ ran 𝐹 ) ) → ∃! 𝑥 ∈ ran 𝐹 𝑝𝑥 )
56 reupick3 ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) ∧ 𝑥 ∈ ran 𝐹 ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) )
57 56 3expa ( ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) ) ∧ 𝑥 ∈ ran 𝐹 ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) )
58 57 expcom ( 𝑥 ∈ ran 𝐹 → ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) )
59 58 adantl ( ( 𝑝𝐴𝑥 ∈ ran 𝐹 ) → ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) )
60 59 adantl ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ( 𝑝𝐴𝑥 ∈ ran 𝐹 ) ) → ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) )
61 55 60 mpand ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ( 𝑝𝐴𝑥 ∈ ran 𝐹 ) ) → ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) )
62 61 expr ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ 𝑝𝐴 ) → ( 𝑥 ∈ ran 𝐹 → ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) ) )
63 49 62 ralrimi ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ 𝑝𝐴 ) → ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) )
64 63 ex ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( 𝑝𝐴 → ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) ) )
65 48 64 ralrimi ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑝𝐴𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) )
66 r19.29r ( ( ∃ 𝑝𝐴𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) ∧ ∀ 𝑝𝐴𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) ) → ∃ 𝑝𝐴 ( ∀ 𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) ) )
67 44 65 66 syl2anc ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝𝐴 ( ∀ 𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) ) )
68 ralim ( ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) → ( ∀ 𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ∀ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) )
69 68 impcom ( ( ∀ 𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) ) → ∀ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 → ¬ 𝑥𝑍 ) )
70 69 reximi ( ∃ 𝑝𝐴 ( ∀ 𝑥 ∈ ran 𝐹𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 ∧ ¬ 𝑥𝑍 ) → ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ) ) → ∃ 𝑝𝐴𝑥 ∈ ran 𝐹 ( 𝑝𝑥 → ¬ 𝑥𝑍 ) )
71 67 70 syl ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝𝐴𝑥 ∈ ran 𝐹 ( 𝑝𝑥 → ¬ 𝑥𝑍 ) )
72 con2b ( ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ↔ ( 𝑥𝑍 → ¬ 𝑝𝑥 ) )
73 72 ralbii ( ∀ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ↔ ∀ 𝑥 ∈ ran 𝐹 ( 𝑥𝑍 → ¬ 𝑝𝑥 ) )
74 df-ral ( ∀ 𝑥 ∈ ran 𝐹 ( 𝑥𝑍 → ¬ 𝑝𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ran 𝐹 → ( 𝑥𝑍 → ¬ 𝑝𝑥 ) ) )
75 bi2.04 ( ( 𝑥 ∈ ran 𝐹 → ( 𝑥𝑍 → ¬ 𝑝𝑥 ) ) ↔ ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) )
76 75 albii ( ∀ 𝑥 ( 𝑥 ∈ ran 𝐹 → ( 𝑥𝑍 → ¬ 𝑝𝑥 ) ) ↔ ∀ 𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) )
77 73 74 76 3bitri ( ∀ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ↔ ∀ 𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) )
78 77 a1i ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∀ 𝑥 ∈ ran 𝐹 ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ↔ ∀ 𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) ) )
79 48 78 rexbid ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∃ 𝑝𝐴𝑥 ∈ ran 𝐹 ( 𝑝𝑥 → ¬ 𝑥𝑍 ) ↔ ∃ 𝑝𝐴𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) ) )
80 71 79 mpbid ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝𝐴𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) )
81 nfv 𝑥 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 )
82 nfa1 𝑥𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) )
83 81 82 nfan 𝑥 ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) )
84 pssss ( 𝑍 ⊊ ran 𝐹𝑍 ⊆ ran 𝐹 )
85 dfss2 ( 𝑍 ⊆ ran 𝐹 ↔ ∀ 𝑥 ( 𝑥𝑍𝑥 ∈ ran 𝐹 ) )
86 84 85 sylib ( 𝑍 ⊊ ran 𝐹 → ∀ 𝑥 ( 𝑥𝑍𝑥 ∈ ran 𝐹 ) )
87 86 adantl ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑥 ( 𝑥𝑍𝑥 ∈ ran 𝐹 ) )
88 df-ral ( ∀ 𝑥𝑍 𝑥 ∈ ran 𝐹 ↔ ∀ 𝑥 ( 𝑥𝑍𝑥 ∈ ran 𝐹 ) )
89 87 88 sylibr ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑥𝑍 𝑥 ∈ ran 𝐹 )
90 89 adantr ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) ) → ∀ 𝑥𝑍 𝑥 ∈ ran 𝐹 )
91 rsp ( ∀ 𝑥𝑍 𝑥 ∈ ran 𝐹 → ( 𝑥𝑍𝑥 ∈ ran 𝐹 ) )
92 90 91 syl ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) ) → ( 𝑥𝑍𝑥 ∈ ran 𝐹 ) )
93 df-ral ( ∀ 𝑥𝑍 ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ↔ ∀ 𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) )
94 93 biimpri ( ∀ 𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) → ∀ 𝑥𝑍 ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) )
95 94 adantl ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) ) → ∀ 𝑥𝑍 ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) )
96 rsp ( ∀ 𝑥𝑍 ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) → ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) )
97 95 96 syl ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) ) → ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) )
98 92 97 mpdd ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) ) → ( 𝑥𝑍 → ¬ 𝑝𝑥 ) )
99 83 98 ralrimi ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) ) → ∀ 𝑥𝑍 ¬ 𝑝𝑥 )
100 99 ex ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∀ 𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) → ∀ 𝑥𝑍 ¬ 𝑝𝑥 ) )
101 100 a1d ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( 𝑝𝐴 → ( ∀ 𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) → ∀ 𝑥𝑍 ¬ 𝑝𝑥 ) ) )
102 48 101 reximdai ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∃ 𝑝𝐴𝑥 ( 𝑥𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝𝑥 ) ) → ∃ 𝑝𝐴𝑥𝑍 ¬ 𝑝𝑥 ) )
103 80 102 mpd ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝𝐴𝑥𝑍 ¬ 𝑝𝑥 )
104 ralnex ( ∀ 𝑥𝑍 ¬ 𝑝𝑥 ↔ ¬ ∃ 𝑥𝑍 𝑝𝑥 )
105 104 rexbii ( ∃ 𝑝𝐴𝑥𝑍 ¬ 𝑝𝑥 ↔ ∃ 𝑝𝐴 ¬ ∃ 𝑥𝑍 𝑝𝑥 )
106 103 105 sylib ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝𝐴 ¬ ∃ 𝑥𝑍 𝑝𝑥 )
107 eluni2 ( 𝑝 𝑍 ↔ ∃ 𝑥𝑍 𝑝𝑥 )
108 107 notbii ( ¬ 𝑝 𝑍 ↔ ¬ ∃ 𝑥𝑍 𝑝𝑥 )
109 108 rexbii ( ∃ 𝑝𝐴 ¬ 𝑝 𝑍 ↔ ∃ 𝑝𝐴 ¬ ∃ 𝑥𝑍 𝑝𝑥 )
110 106 109 sylibr ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝𝐴 ¬ 𝑝 𝑍 )
111 dfss3 ( 𝐴 𝑍 ↔ ∀ 𝑝𝐴 𝑝 𝑍 )
112 dfral2 ( ∀ 𝑝𝐴 𝑝 𝑍 ↔ ¬ ∃ 𝑝𝐴 ¬ 𝑝 𝑍 )
113 111 112 bitri ( 𝐴 𝑍 ↔ ¬ ∃ 𝑝𝐴 ¬ 𝑝 𝑍 )
114 113 con2bii2 ( ¬ 𝐴 𝑍 ↔ ∃ 𝑝𝐴 ¬ 𝑝 𝑍 )
115 110 114 sylibr ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ¬ 𝐴 𝑍 )
116 115 ex ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑍 ⊊ ran 𝐹 → ¬ 𝐴 𝑍 ) )
117 116 con2d ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝐴 𝑍 → ¬ 𝑍 ⊊ ran 𝐹 ) )
118 npss ( ¬ 𝑍 ⊊ ran 𝐹 ↔ ( 𝑍 ⊆ ran 𝐹𝑍 = ran 𝐹 ) )
119 117 118 syl6ib ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝐴 𝑍 → ( 𝑍 ⊆ ran 𝐹𝑍 = ran 𝐹 ) ) )
120 119 com23 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑍 ⊆ ran 𝐹 → ( 𝐴 𝑍𝑍 = ran 𝐹 ) ) )
121 120 imp32 ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝𝐴 ( ( 𝐹𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑍 ⊆ ran 𝐹𝐴 𝑍 ) ) → 𝑍 = ran 𝐹 )