Step |
Hyp |
Ref |
Expression |
1 |
|
pssnel |
⊢ ( 𝑍 ⊊ ran 𝐹 → ∃ 𝑥 ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
3 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ran 𝐹 ¬ 𝑥 ∈ 𝑍 ↔ ∃ 𝑥 ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
4 |
2 3
|
sylibr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ∈ ran 𝐹 ¬ 𝑥 ∈ 𝑍 ) |
5 |
|
fnrnfv |
⊢ ( 𝐹 Fn 𝐴 → ran 𝐹 = { 𝑥 ∣ ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) } ) |
6 |
5
|
abeq2d |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ran 𝐹 ↔ ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) ) |
7 |
6
|
biimpd |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ran 𝐹 → ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) ) |
8 |
7
|
ralrimiv |
⊢ ( 𝐹 Fn 𝐴 → ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) |
11 |
|
r19.29r |
⊢ ( ( ∃ 𝑥 ∈ ran 𝐹 ¬ 𝑥 ∈ 𝑍 ∧ ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) → ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) ) |
12 |
4 10 11
|
syl2anc |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) ) |
13 |
|
nfra1 |
⊢ Ⅎ 𝑝 ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } |
14 |
|
rsp |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ) |
15 |
|
vsnid |
⊢ 𝑝 ∈ { 𝑝 } |
16 |
|
eleq2 |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝 ∈ ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) ↔ 𝑝 ∈ { 𝑝 } ) ) |
17 |
15 16
|
mpbiri |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → 𝑝 ∈ ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) ) |
18 |
17
|
elin1d |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → 𝑝 ∈ ( 𝐹 ‘ 𝑝 ) ) |
19 |
14 18
|
syl6 |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝 ∈ 𝐴 → 𝑝 ∈ ( 𝐹 ‘ 𝑝 ) ) ) |
20 |
19
|
adantr |
⊢ ( ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ 𝑥 = ( 𝐹 ‘ 𝑝 ) ) → ( 𝑝 ∈ 𝐴 → 𝑝 ∈ ( 𝐹 ‘ 𝑝 ) ) ) |
21 |
|
eleq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑝 ) → ( 𝑝 ∈ 𝑥 ↔ 𝑝 ∈ ( 𝐹 ‘ 𝑝 ) ) ) |
22 |
21
|
adantl |
⊢ ( ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ 𝑥 = ( 𝐹 ‘ 𝑝 ) ) → ( 𝑝 ∈ 𝑥 ↔ 𝑝 ∈ ( 𝐹 ‘ 𝑝 ) ) ) |
23 |
20 22
|
sylibrd |
⊢ ( ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ 𝑥 = ( 𝐹 ‘ 𝑝 ) ) → ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝑥 ) ) |
24 |
23
|
ex |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑥 = ( 𝐹 ‘ 𝑝 ) → ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝑥 ) ) ) |
25 |
24
|
com23 |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝 ∈ 𝐴 → ( 𝑥 = ( 𝐹 ‘ 𝑝 ) → 𝑝 ∈ 𝑥 ) ) ) |
26 |
13 25
|
reximdai |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) → ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) → ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) → ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ) |
29 |
28
|
anim2d |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) → ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ) ) |
30 |
29
|
reximdv |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) → ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ) ) |
31 |
12 30
|
mpd |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ) |
32 |
|
ancom |
⊢ ( ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ↔ ( ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
33 |
|
r19.41v |
⊢ ( ∃ 𝑝 ∈ 𝐴 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ↔ ( ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
34 |
32 33
|
bitr4i |
⊢ ( ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ↔ ∃ 𝑝 ∈ 𝐴 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
35 |
34
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ↔ ∃ 𝑥 ∈ ran 𝐹 ∃ 𝑝 ∈ 𝐴 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
36 |
31 35
|
sylib |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ∈ ran 𝐹 ∃ 𝑝 ∈ 𝐴 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
37 |
|
rexcom |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ↔ ∃ 𝑥 ∈ ran 𝐹 ∃ 𝑝 ∈ 𝐴 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
38 |
36 37
|
sylibr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
39 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) |
40 |
39
|
19.3 |
⊢ ( ∀ 𝑥 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ↔ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
41 |
|
alral |
⊢ ( ∀ 𝑥 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
42 |
40 41
|
sylbir |
⊢ ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
43 |
42
|
reximi |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
44 |
38 43
|
syl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
45 |
|
nfv |
⊢ Ⅎ 𝑝 𝐹 Fn 𝐴 |
46 |
45 13
|
nfan |
⊢ Ⅎ 𝑝 ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) |
47 |
|
nfv |
⊢ Ⅎ 𝑝 𝑍 ⊊ ran 𝐹 |
48 |
46 47
|
nfan |
⊢ Ⅎ 𝑝 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) |
49 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ 𝑝 ∈ 𝐴 ) |
50 |
|
fvineqsneu |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ∀ 𝑝 ∈ 𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ) |
51 |
50
|
adantr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑝 ∈ 𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ) |
52 |
|
rsp |
⊢ ( ∀ 𝑝 ∈ 𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 → ( 𝑝 ∈ 𝐴 → ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ) ) |
53 |
51 52
|
syl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( 𝑝 ∈ 𝐴 → ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ) ) |
54 |
53
|
adantrd |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ( 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹 ) → ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ) ) |
55 |
54
|
imp |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹 ) ) → ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ) |
56 |
|
reupick3 |
⊢ ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ∧ 𝑥 ∈ ran 𝐹 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) |
57 |
56
|
3expa |
⊢ ( ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) ∧ 𝑥 ∈ ran 𝐹 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) |
58 |
57
|
expcom |
⊢ ( 𝑥 ∈ ran 𝐹 → ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) |
59 |
58
|
adantl |
⊢ ( ( 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹 ) → ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) |
60 |
59
|
adantl |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹 ) ) → ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) |
61 |
55 60
|
mpand |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹 ) ) → ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) |
62 |
61
|
expr |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑥 ∈ ran 𝐹 → ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) ) |
63 |
49 62
|
ralrimi |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ 𝑝 ∈ 𝐴 ) → ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) |
64 |
63
|
ex |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( 𝑝 ∈ 𝐴 → ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) ) |
65 |
48 64
|
ralrimi |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) |
66 |
|
r19.29r |
⊢ ( ( ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) → ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) ) |
67 |
44 65 66
|
syl2anc |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) ) |
68 |
|
ralim |
⊢ ( ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) → ( ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) |
69 |
68
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) → ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) |
70 |
69
|
reximi |
⊢ ( ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) → ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) |
71 |
67 70
|
syl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) |
72 |
|
con2b |
⊢ ( ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ↔ ( 𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥 ) ) |
73 |
72
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ↔ ∀ 𝑥 ∈ ran 𝐹 ( 𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥 ) ) |
74 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ ran 𝐹 ( 𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ran 𝐹 → ( 𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
75 |
|
bi2.04 |
⊢ ( ( 𝑥 ∈ ran 𝐹 → ( 𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
76 |
75
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ran 𝐹 → ( 𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
77 |
73 74 76
|
3bitri |
⊢ ( ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
78 |
77
|
a1i |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) ) |
79 |
48 78
|
rexbid |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ↔ ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) ) |
80 |
71 79
|
mpbid |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
81 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) |
82 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) |
83 |
81 82
|
nfan |
⊢ Ⅎ 𝑥 ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
84 |
|
pssss |
⊢ ( 𝑍 ⊊ ran 𝐹 → 𝑍 ⊆ ran 𝐹 ) |
85 |
|
dfss2 |
⊢ ( 𝑍 ⊆ ran 𝐹 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹 ) ) |
86 |
84 85
|
sylib |
⊢ ( 𝑍 ⊊ ran 𝐹 → ∀ 𝑥 ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹 ) ) |
87 |
86
|
adantl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑥 ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹 ) ) |
88 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝑍 𝑥 ∈ ran 𝐹 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹 ) ) |
89 |
87 88
|
sylibr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑥 ∈ 𝑍 𝑥 ∈ ran 𝐹 ) |
90 |
89
|
adantr |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) → ∀ 𝑥 ∈ 𝑍 𝑥 ∈ ran 𝐹 ) |
91 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝑍 𝑥 ∈ ran 𝐹 → ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹 ) ) |
92 |
90 91
|
syl |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) → ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹 ) ) |
93 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝑍 ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
94 |
93
|
biimpri |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) → ∀ 𝑥 ∈ 𝑍 ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) |
95 |
94
|
adantl |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) → ∀ 𝑥 ∈ 𝑍 ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) |
96 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝑍 ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) → ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
97 |
95 96
|
syl |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) → ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
98 |
92 97
|
mpdd |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) → ( 𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥 ) ) |
99 |
83 98
|
ralrimi |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) → ∀ 𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ) |
100 |
99
|
ex |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) → ∀ 𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ) ) |
101 |
100
|
a1d |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( 𝑝 ∈ 𝐴 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) → ∀ 𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ) ) ) |
102 |
48 101
|
reximdai |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) → ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ) ) |
103 |
80 102
|
mpd |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ) |
104 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ↔ ¬ ∃ 𝑥 ∈ 𝑍 𝑝 ∈ 𝑥 ) |
105 |
104
|
rexbii |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ↔ ∃ 𝑝 ∈ 𝐴 ¬ ∃ 𝑥 ∈ 𝑍 𝑝 ∈ 𝑥 ) |
106 |
103 105
|
sylib |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ¬ ∃ 𝑥 ∈ 𝑍 𝑝 ∈ 𝑥 ) |
107 |
|
eluni2 |
⊢ ( 𝑝 ∈ ∪ 𝑍 ↔ ∃ 𝑥 ∈ 𝑍 𝑝 ∈ 𝑥 ) |
108 |
107
|
notbii |
⊢ ( ¬ 𝑝 ∈ ∪ 𝑍 ↔ ¬ ∃ 𝑥 ∈ 𝑍 𝑝 ∈ 𝑥 ) |
109 |
108
|
rexbii |
⊢ ( ∃ 𝑝 ∈ 𝐴 ¬ 𝑝 ∈ ∪ 𝑍 ↔ ∃ 𝑝 ∈ 𝐴 ¬ ∃ 𝑥 ∈ 𝑍 𝑝 ∈ 𝑥 ) |
110 |
106 109
|
sylibr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ¬ 𝑝 ∈ ∪ 𝑍 ) |
111 |
|
dfss3 |
⊢ ( 𝐴 ⊆ ∪ 𝑍 ↔ ∀ 𝑝 ∈ 𝐴 𝑝 ∈ ∪ 𝑍 ) |
112 |
|
dfral2 |
⊢ ( ∀ 𝑝 ∈ 𝐴 𝑝 ∈ ∪ 𝑍 ↔ ¬ ∃ 𝑝 ∈ 𝐴 ¬ 𝑝 ∈ ∪ 𝑍 ) |
113 |
111 112
|
bitri |
⊢ ( 𝐴 ⊆ ∪ 𝑍 ↔ ¬ ∃ 𝑝 ∈ 𝐴 ¬ 𝑝 ∈ ∪ 𝑍 ) |
114 |
113
|
con2bii2 |
⊢ ( ¬ 𝐴 ⊆ ∪ 𝑍 ↔ ∃ 𝑝 ∈ 𝐴 ¬ 𝑝 ∈ ∪ 𝑍 ) |
115 |
110 114
|
sylibr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ¬ 𝐴 ⊆ ∪ 𝑍 ) |
116 |
115
|
ex |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑍 ⊊ ran 𝐹 → ¬ 𝐴 ⊆ ∪ 𝑍 ) ) |
117 |
116
|
con2d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝐴 ⊆ ∪ 𝑍 → ¬ 𝑍 ⊊ ran 𝐹 ) ) |
118 |
|
npss |
⊢ ( ¬ 𝑍 ⊊ ran 𝐹 ↔ ( 𝑍 ⊆ ran 𝐹 → 𝑍 = ran 𝐹 ) ) |
119 |
117 118
|
syl6ib |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝐴 ⊆ ∪ 𝑍 → ( 𝑍 ⊆ ran 𝐹 → 𝑍 = ran 𝐹 ) ) ) |
120 |
119
|
com23 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑍 ⊆ ran 𝐹 → ( 𝐴 ⊆ ∪ 𝑍 → 𝑍 = ran 𝐹 ) ) ) |
121 |
120
|
imp32 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑍 ⊆ ran 𝐹 ∧ 𝐴 ⊆ ∪ 𝑍 ) ) → 𝑍 = ran 𝐹 ) |