| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pssnel | ⊢ ( 𝑍  ⊊  ran  𝐹  →  ∃ 𝑥 ( 𝑥  ∈  ran  𝐹  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∃ 𝑥 ( 𝑥  ∈  ran  𝐹  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 3 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  ran  𝐹 ¬  𝑥  ∈  𝑍  ↔  ∃ 𝑥 ( 𝑥  ∈  ran  𝐹  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 4 | 2 3 | sylibr | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∃ 𝑥  ∈  ran  𝐹 ¬  𝑥  ∈  𝑍 ) | 
						
							| 5 |  | fnrnfv | ⊢ ( 𝐹  Fn  𝐴  →  ran  𝐹  =  { 𝑥  ∣  ∃ 𝑝  ∈  𝐴 𝑥  =  ( 𝐹 ‘ 𝑝 ) } ) | 
						
							| 6 | 5 | eqabrd | ⊢ ( 𝐹  Fn  𝐴  →  ( 𝑥  ∈  ran  𝐹  ↔  ∃ 𝑝  ∈  𝐴 𝑥  =  ( 𝐹 ‘ 𝑝 ) ) ) | 
						
							| 7 | 6 | biimpd | ⊢ ( 𝐹  Fn  𝐴  →  ( 𝑥  ∈  ran  𝐹  →  ∃ 𝑝  ∈  𝐴 𝑥  =  ( 𝐹 ‘ 𝑝 ) ) ) | 
						
							| 8 | 7 | ralrimiv | ⊢ ( 𝐹  Fn  𝐴  →  ∀ 𝑥  ∈  ran  𝐹 ∃ 𝑝  ∈  𝐴 𝑥  =  ( 𝐹 ‘ 𝑝 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  →  ∀ 𝑥  ∈  ran  𝐹 ∃ 𝑝  ∈  𝐴 𝑥  =  ( 𝐹 ‘ 𝑝 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∀ 𝑥  ∈  ran  𝐹 ∃ 𝑝  ∈  𝐴 𝑥  =  ( 𝐹 ‘ 𝑝 ) ) | 
						
							| 11 |  | r19.29r | ⊢ ( ( ∃ 𝑥  ∈  ran  𝐹 ¬  𝑥  ∈  𝑍  ∧  ∀ 𝑥  ∈  ran  𝐹 ∃ 𝑝  ∈  𝐴 𝑥  =  ( 𝐹 ‘ 𝑝 ) )  →  ∃ 𝑥  ∈  ran  𝐹 ( ¬  𝑥  ∈  𝑍  ∧  ∃ 𝑝  ∈  𝐴 𝑥  =  ( 𝐹 ‘ 𝑝 ) ) ) | 
						
							| 12 | 4 10 11 | syl2anc | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∃ 𝑥  ∈  ran  𝐹 ( ¬  𝑥  ∈  𝑍  ∧  ∃ 𝑝  ∈  𝐴 𝑥  =  ( 𝐹 ‘ 𝑝 ) ) ) | 
						
							| 13 |  | nfra1 | ⊢ Ⅎ 𝑝 ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } | 
						
							| 14 |  | rsp | ⊢ ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ( 𝑝  ∈  𝐴  →  ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } ) ) | 
						
							| 15 |  | vsnid | ⊢ 𝑝  ∈  { 𝑝 } | 
						
							| 16 |  | eleq2 | ⊢ ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ( 𝑝  ∈  ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  ↔  𝑝  ∈  { 𝑝 } ) ) | 
						
							| 17 | 15 16 | mpbiri | ⊢ ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  𝑝  ∈  ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 ) ) | 
						
							| 18 | 17 | elin1d | ⊢ ( ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  𝑝  ∈  ( 𝐹 ‘ 𝑝 ) ) | 
						
							| 19 | 14 18 | syl6 | ⊢ ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ( 𝑝  ∈  𝐴  →  𝑝  ∈  ( 𝐹 ‘ 𝑝 ) ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ∧  𝑥  =  ( 𝐹 ‘ 𝑝 ) )  →  ( 𝑝  ∈  𝐴  →  𝑝  ∈  ( 𝐹 ‘ 𝑝 ) ) ) | 
						
							| 21 |  | eleq2 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑝 )  →  ( 𝑝  ∈  𝑥  ↔  𝑝  ∈  ( 𝐹 ‘ 𝑝 ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ∧  𝑥  =  ( 𝐹 ‘ 𝑝 ) )  →  ( 𝑝  ∈  𝑥  ↔  𝑝  ∈  ( 𝐹 ‘ 𝑝 ) ) ) | 
						
							| 23 | 20 22 | sylibrd | ⊢ ( ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  ∧  𝑥  =  ( 𝐹 ‘ 𝑝 ) )  →  ( 𝑝  ∈  𝐴  →  𝑝  ∈  𝑥 ) ) | 
						
							| 24 | 23 | ex | ⊢ ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ( 𝑥  =  ( 𝐹 ‘ 𝑝 )  →  ( 𝑝  ∈  𝐴  →  𝑝  ∈  𝑥 ) ) ) | 
						
							| 25 | 24 | com23 | ⊢ ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ( 𝑝  ∈  𝐴  →  ( 𝑥  =  ( 𝐹 ‘ 𝑝 )  →  𝑝  ∈  𝑥 ) ) ) | 
						
							| 26 | 13 25 | reximdai | ⊢ ( ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 }  →  ( ∃ 𝑝  ∈  𝐴 𝑥  =  ( 𝐹 ‘ 𝑝 )  →  ∃ 𝑝  ∈  𝐴 𝑝  ∈  𝑥 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  →  ( ∃ 𝑝  ∈  𝐴 𝑥  =  ( 𝐹 ‘ 𝑝 )  →  ∃ 𝑝  ∈  𝐴 𝑝  ∈  𝑥 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ( ∃ 𝑝  ∈  𝐴 𝑥  =  ( 𝐹 ‘ 𝑝 )  →  ∃ 𝑝  ∈  𝐴 𝑝  ∈  𝑥 ) ) | 
						
							| 29 | 28 | anim2d | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ( ( ¬  𝑥  ∈  𝑍  ∧  ∃ 𝑝  ∈  𝐴 𝑥  =  ( 𝐹 ‘ 𝑝 ) )  →  ( ¬  𝑥  ∈  𝑍  ∧  ∃ 𝑝  ∈  𝐴 𝑝  ∈  𝑥 ) ) ) | 
						
							| 30 | 29 | reximdv | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ( ∃ 𝑥  ∈  ran  𝐹 ( ¬  𝑥  ∈  𝑍  ∧  ∃ 𝑝  ∈  𝐴 𝑥  =  ( 𝐹 ‘ 𝑝 ) )  →  ∃ 𝑥  ∈  ran  𝐹 ( ¬  𝑥  ∈  𝑍  ∧  ∃ 𝑝  ∈  𝐴 𝑝  ∈  𝑥 ) ) ) | 
						
							| 31 | 12 30 | mpd | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∃ 𝑥  ∈  ran  𝐹 ( ¬  𝑥  ∈  𝑍  ∧  ∃ 𝑝  ∈  𝐴 𝑝  ∈  𝑥 ) ) | 
						
							| 32 |  | ancom | ⊢ ( ( ¬  𝑥  ∈  𝑍  ∧  ∃ 𝑝  ∈  𝐴 𝑝  ∈  𝑥 )  ↔  ( ∃ 𝑝  ∈  𝐴 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 33 |  | r19.41v | ⊢ ( ∃ 𝑝  ∈  𝐴 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  ↔  ( ∃ 𝑝  ∈  𝐴 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 34 | 32 33 | bitr4i | ⊢ ( ( ¬  𝑥  ∈  𝑍  ∧  ∃ 𝑝  ∈  𝐴 𝑝  ∈  𝑥 )  ↔  ∃ 𝑝  ∈  𝐴 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 35 | 34 | rexbii | ⊢ ( ∃ 𝑥  ∈  ran  𝐹 ( ¬  𝑥  ∈  𝑍  ∧  ∃ 𝑝  ∈  𝐴 𝑝  ∈  𝑥 )  ↔  ∃ 𝑥  ∈  ran  𝐹 ∃ 𝑝  ∈  𝐴 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 36 | 31 35 | sylib | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∃ 𝑥  ∈  ran  𝐹 ∃ 𝑝  ∈  𝐴 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 37 |  | rexcom | ⊢ ( ∃ 𝑝  ∈  𝐴 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  ↔  ∃ 𝑥  ∈  ran  𝐹 ∃ 𝑝  ∈  𝐴 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 38 | 36 37 | sylibr | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∃ 𝑝  ∈  𝐴 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 39 |  | nfre1 | ⊢ Ⅎ 𝑥 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) | 
						
							| 40 | 39 | 19.3 | ⊢ ( ∀ 𝑥 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  ↔  ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 41 |  | alral | ⊢ ( ∀ 𝑥 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ∀ 𝑥  ∈  ran  𝐹 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 42 | 40 41 | sylbir | ⊢ ( ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ∀ 𝑥  ∈  ran  𝐹 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 43 | 42 | reximi | ⊢ ( ∃ 𝑝  ∈  𝐴 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ∃ 𝑝  ∈  𝐴 ∀ 𝑥  ∈  ran  𝐹 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 44 | 38 43 | syl | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∃ 𝑝  ∈  𝐴 ∀ 𝑥  ∈  ran  𝐹 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 45 |  | nfv | ⊢ Ⅎ 𝑝 𝐹  Fn  𝐴 | 
						
							| 46 | 45 13 | nfan | ⊢ Ⅎ 𝑝 ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } ) | 
						
							| 47 |  | nfv | ⊢ Ⅎ 𝑝 𝑍  ⊊  ran  𝐹 | 
						
							| 48 | 46 47 | nfan | ⊢ Ⅎ 𝑝 ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 ) | 
						
							| 49 |  | nfv | ⊢ Ⅎ 𝑥 ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  ∧  𝑝  ∈  𝐴 ) | 
						
							| 50 |  | fvineqsneu | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  →  ∀ 𝑝  ∈  𝐴 ∃! 𝑥  ∈  ran  𝐹 𝑝  ∈  𝑥 ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∀ 𝑝  ∈  𝐴 ∃! 𝑥  ∈  ran  𝐹 𝑝  ∈  𝑥 ) | 
						
							| 52 |  | rsp | ⊢ ( ∀ 𝑝  ∈  𝐴 ∃! 𝑥  ∈  ran  𝐹 𝑝  ∈  𝑥  →  ( 𝑝  ∈  𝐴  →  ∃! 𝑥  ∈  ran  𝐹 𝑝  ∈  𝑥 ) ) | 
						
							| 53 | 51 52 | syl | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ( 𝑝  ∈  𝐴  →  ∃! 𝑥  ∈  ran  𝐹 𝑝  ∈  𝑥 ) ) | 
						
							| 54 | 53 | adantrd | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ( ( 𝑝  ∈  𝐴  ∧  𝑥  ∈  ran  𝐹 )  →  ∃! 𝑥  ∈  ran  𝐹 𝑝  ∈  𝑥 ) ) | 
						
							| 55 | 54 | imp | ⊢ ( ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  ∧  ( 𝑝  ∈  𝐴  ∧  𝑥  ∈  ran  𝐹 ) )  →  ∃! 𝑥  ∈  ran  𝐹 𝑝  ∈  𝑥 ) | 
						
							| 56 |  | reupick3 | ⊢ ( ( ∃! 𝑥  ∈  ran  𝐹 𝑝  ∈  𝑥  ∧  ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  ∧  𝑥  ∈  ran  𝐹 )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 57 | 56 | 3expa | ⊢ ( ( ( ∃! 𝑥  ∈  ran  𝐹 𝑝  ∈  𝑥  ∧  ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) )  ∧  𝑥  ∈  ran  𝐹 )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 58 | 57 | expcom | ⊢ ( 𝑥  ∈  ran  𝐹  →  ( ( ∃! 𝑥  ∈  ran  𝐹 𝑝  ∈  𝑥  ∧  ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝑝  ∈  𝐴  ∧  𝑥  ∈  ran  𝐹 )  →  ( ( ∃! 𝑥  ∈  ran  𝐹 𝑝  ∈  𝑥  ∧  ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  ∧  ( 𝑝  ∈  𝐴  ∧  𝑥  ∈  ran  𝐹 ) )  →  ( ( ∃! 𝑥  ∈  ran  𝐹 𝑝  ∈  𝑥  ∧  ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 ) )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) ) | 
						
							| 61 | 55 60 | mpand | ⊢ ( ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  ∧  ( 𝑝  ∈  𝐴  ∧  𝑥  ∈  ran  𝐹 ) )  →  ( ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) ) | 
						
							| 62 | 61 | expr | ⊢ ( ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  ∧  𝑝  ∈  𝐴 )  →  ( 𝑥  ∈  ran  𝐹  →  ( ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) ) ) | 
						
							| 63 | 49 62 | ralrimi | ⊢ ( ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  ∧  𝑝  ∈  𝐴 )  →  ∀ 𝑥  ∈  ran  𝐹 ( ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) ) | 
						
							| 64 | 63 | ex | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ( 𝑝  ∈  𝐴  →  ∀ 𝑥  ∈  ran  𝐹 ( ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) ) ) | 
						
							| 65 | 48 64 | ralrimi | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∀ 𝑝  ∈  𝐴 ∀ 𝑥  ∈  ran  𝐹 ( ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) ) | 
						
							| 66 |  | r19.29r | ⊢ ( ( ∃ 𝑝  ∈  𝐴 ∀ 𝑥  ∈  ran  𝐹 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  ∧  ∀ 𝑝  ∈  𝐴 ∀ 𝑥  ∈  ran  𝐹 ( ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) )  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑥  ∈  ran  𝐹 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  ∧  ∀ 𝑥  ∈  ran  𝐹 ( ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) ) ) | 
						
							| 67 | 44 65 66 | syl2anc | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑥  ∈  ran  𝐹 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  ∧  ∀ 𝑥  ∈  ran  𝐹 ( ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) ) ) | 
						
							| 68 |  | ralim | ⊢ ( ∀ 𝑥  ∈  ran  𝐹 ( ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) )  →  ( ∀ 𝑥  ∈  ran  𝐹 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ∀ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) ) | 
						
							| 69 | 68 | impcom | ⊢ ( ( ∀ 𝑥  ∈  ran  𝐹 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  ∧  ∀ 𝑥  ∈  ran  𝐹 ( ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) )  →  ∀ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 70 | 69 | reximi | ⊢ ( ∃ 𝑝  ∈  𝐴 ( ∀ 𝑥  ∈  ran  𝐹 ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  ∧  ∀ 𝑥  ∈  ran  𝐹 ( ∃ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  ∧  ¬  𝑥  ∈  𝑍 )  →  ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) )  →  ∃ 𝑝  ∈  𝐴 ∀ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 71 | 67 70 | syl | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∃ 𝑝  ∈  𝐴 ∀ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 ) ) | 
						
							| 72 |  | con2b | ⊢ ( ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 )  ↔  ( 𝑥  ∈  𝑍  →  ¬  𝑝  ∈  𝑥 ) ) | 
						
							| 73 | 72 | ralbii | ⊢ ( ∀ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 )  ↔  ∀ 𝑥  ∈  ran  𝐹 ( 𝑥  ∈  𝑍  →  ¬  𝑝  ∈  𝑥 ) ) | 
						
							| 74 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  ran  𝐹 ( 𝑥  ∈  𝑍  →  ¬  𝑝  ∈  𝑥 )  ↔  ∀ 𝑥 ( 𝑥  ∈  ran  𝐹  →  ( 𝑥  ∈  𝑍  →  ¬  𝑝  ∈  𝑥 ) ) ) | 
						
							| 75 |  | bi2.04 | ⊢ ( ( 𝑥  ∈  ran  𝐹  →  ( 𝑥  ∈  𝑍  →  ¬  𝑝  ∈  𝑥 ) )  ↔  ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) ) | 
						
							| 76 | 75 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  ran  𝐹  →  ( 𝑥  ∈  𝑍  →  ¬  𝑝  ∈  𝑥 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) ) | 
						
							| 77 | 73 74 76 | 3bitri | ⊢ ( ∀ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) ) | 
						
							| 78 | 77 | a1i | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ( ∀ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) ) ) | 
						
							| 79 | 48 78 | rexbid | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ( ∃ 𝑝  ∈  𝐴 ∀ 𝑥  ∈  ran  𝐹 ( 𝑝  ∈  𝑥  →  ¬  𝑥  ∈  𝑍 )  ↔  ∃ 𝑝  ∈  𝐴 ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) ) ) | 
						
							| 80 | 71 79 | mpbid | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∃ 𝑝  ∈  𝐴 ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) ) | 
						
							| 81 |  | nfv | ⊢ Ⅎ 𝑥 ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 ) | 
						
							| 82 |  | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) | 
						
							| 83 | 81 82 | nfan | ⊢ Ⅎ 𝑥 ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) ) | 
						
							| 84 |  | pssss | ⊢ ( 𝑍  ⊊  ran  𝐹  →  𝑍  ⊆  ran  𝐹 ) | 
						
							| 85 |  | df-ss | ⊢ ( 𝑍  ⊆  ran  𝐹  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  𝑥  ∈  ran  𝐹 ) ) | 
						
							| 86 | 84 85 | sylib | ⊢ ( 𝑍  ⊊  ran  𝐹  →  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  𝑥  ∈  ran  𝐹 ) ) | 
						
							| 87 | 86 | adantl | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  𝑥  ∈  ran  𝐹 ) ) | 
						
							| 88 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝑍 𝑥  ∈  ran  𝐹  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  𝑥  ∈  ran  𝐹 ) ) | 
						
							| 89 | 87 88 | sylibr | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∀ 𝑥  ∈  𝑍 𝑥  ∈  ran  𝐹 ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) )  →  ∀ 𝑥  ∈  𝑍 𝑥  ∈  ran  𝐹 ) | 
						
							| 91 |  | rsp | ⊢ ( ∀ 𝑥  ∈  𝑍 𝑥  ∈  ran  𝐹  →  ( 𝑥  ∈  𝑍  →  𝑥  ∈  ran  𝐹 ) ) | 
						
							| 92 | 90 91 | syl | ⊢ ( ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) )  →  ( 𝑥  ∈  𝑍  →  𝑥  ∈  ran  𝐹 ) ) | 
						
							| 93 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝑍 ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) ) | 
						
							| 94 | 93 | biimpri | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) )  →  ∀ 𝑥  ∈  𝑍 ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) | 
						
							| 95 | 94 | adantl | ⊢ ( ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) )  →  ∀ 𝑥  ∈  𝑍 ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) | 
						
							| 96 |  | rsp | ⊢ ( ∀ 𝑥  ∈  𝑍 ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 )  →  ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) ) | 
						
							| 97 | 95 96 | syl | ⊢ ( ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) )  →  ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) ) | 
						
							| 98 | 92 97 | mpdd | ⊢ ( ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) )  →  ( 𝑥  ∈  𝑍  →  ¬  𝑝  ∈  𝑥 ) ) | 
						
							| 99 | 83 98 | ralrimi | ⊢ ( ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  ∧  ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) ) )  →  ∀ 𝑥  ∈  𝑍 ¬  𝑝  ∈  𝑥 ) | 
						
							| 100 | 99 | ex | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) )  →  ∀ 𝑥  ∈  𝑍 ¬  𝑝  ∈  𝑥 ) ) | 
						
							| 101 | 100 | a1d | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ( 𝑝  ∈  𝐴  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) )  →  ∀ 𝑥  ∈  𝑍 ¬  𝑝  ∈  𝑥 ) ) ) | 
						
							| 102 | 48 101 | reximdai | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ( ∃ 𝑝  ∈  𝐴 ∀ 𝑥 ( 𝑥  ∈  𝑍  →  ( 𝑥  ∈  ran  𝐹  →  ¬  𝑝  ∈  𝑥 ) )  →  ∃ 𝑝  ∈  𝐴 ∀ 𝑥  ∈  𝑍 ¬  𝑝  ∈  𝑥 ) ) | 
						
							| 103 | 80 102 | mpd | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∃ 𝑝  ∈  𝐴 ∀ 𝑥  ∈  𝑍 ¬  𝑝  ∈  𝑥 ) | 
						
							| 104 |  | ralnex | ⊢ ( ∀ 𝑥  ∈  𝑍 ¬  𝑝  ∈  𝑥  ↔  ¬  ∃ 𝑥  ∈  𝑍 𝑝  ∈  𝑥 ) | 
						
							| 105 | 104 | rexbii | ⊢ ( ∃ 𝑝  ∈  𝐴 ∀ 𝑥  ∈  𝑍 ¬  𝑝  ∈  𝑥  ↔  ∃ 𝑝  ∈  𝐴 ¬  ∃ 𝑥  ∈  𝑍 𝑝  ∈  𝑥 ) | 
						
							| 106 | 103 105 | sylib | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∃ 𝑝  ∈  𝐴 ¬  ∃ 𝑥  ∈  𝑍 𝑝  ∈  𝑥 ) | 
						
							| 107 |  | eluni2 | ⊢ ( 𝑝  ∈  ∪  𝑍  ↔  ∃ 𝑥  ∈  𝑍 𝑝  ∈  𝑥 ) | 
						
							| 108 | 107 | notbii | ⊢ ( ¬  𝑝  ∈  ∪  𝑍  ↔  ¬  ∃ 𝑥  ∈  𝑍 𝑝  ∈  𝑥 ) | 
						
							| 109 | 108 | rexbii | ⊢ ( ∃ 𝑝  ∈  𝐴 ¬  𝑝  ∈  ∪  𝑍  ↔  ∃ 𝑝  ∈  𝐴 ¬  ∃ 𝑥  ∈  𝑍 𝑝  ∈  𝑥 ) | 
						
							| 110 | 106 109 | sylibr | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ∃ 𝑝  ∈  𝐴 ¬  𝑝  ∈  ∪  𝑍 ) | 
						
							| 111 |  | dfss3 | ⊢ ( 𝐴  ⊆  ∪  𝑍  ↔  ∀ 𝑝  ∈  𝐴 𝑝  ∈  ∪  𝑍 ) | 
						
							| 112 |  | dfral2 | ⊢ ( ∀ 𝑝  ∈  𝐴 𝑝  ∈  ∪  𝑍  ↔  ¬  ∃ 𝑝  ∈  𝐴 ¬  𝑝  ∈  ∪  𝑍 ) | 
						
							| 113 | 111 112 | bitri | ⊢ ( 𝐴  ⊆  ∪  𝑍  ↔  ¬  ∃ 𝑝  ∈  𝐴 ¬  𝑝  ∈  ∪  𝑍 ) | 
						
							| 114 | 113 | con2bii2 | ⊢ ( ¬  𝐴  ⊆  ∪  𝑍  ↔  ∃ 𝑝  ∈  𝐴 ¬  𝑝  ∈  ∪  𝑍 ) | 
						
							| 115 | 110 114 | sylibr | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  𝑍  ⊊  ran  𝐹 )  →  ¬  𝐴  ⊆  ∪  𝑍 ) | 
						
							| 116 | 115 | ex | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  →  ( 𝑍  ⊊  ran  𝐹  →  ¬  𝐴  ⊆  ∪  𝑍 ) ) | 
						
							| 117 | 116 | con2d | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  →  ( 𝐴  ⊆  ∪  𝑍  →  ¬  𝑍  ⊊  ran  𝐹 ) ) | 
						
							| 118 |  | npss | ⊢ ( ¬  𝑍  ⊊  ran  𝐹  ↔  ( 𝑍  ⊆  ran  𝐹  →  𝑍  =  ran  𝐹 ) ) | 
						
							| 119 | 117 118 | imbitrdi | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  →  ( 𝐴  ⊆  ∪  𝑍  →  ( 𝑍  ⊆  ran  𝐹  →  𝑍  =  ran  𝐹 ) ) ) | 
						
							| 120 | 119 | com23 | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  →  ( 𝑍  ⊆  ran  𝐹  →  ( 𝐴  ⊆  ∪  𝑍  →  𝑍  =  ran  𝐹 ) ) ) | 
						
							| 121 | 120 | imp32 | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑝  ∈  𝐴 ( ( 𝐹 ‘ 𝑝 )  ∩  𝐴 )  =  { 𝑝 } )  ∧  ( 𝑍  ⊆  ran  𝐹  ∧  𝐴  ⊆  ∪  𝑍 ) )  →  𝑍  =  ran  𝐹 ) |