| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pssnel |
⊢ ( 𝑍 ⊊ ran 𝐹 → ∃ 𝑥 ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 2 |
1
|
adantl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 3 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ran 𝐹 ¬ 𝑥 ∈ 𝑍 ↔ ∃ 𝑥 ( 𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 4 |
2 3
|
sylibr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ∈ ran 𝐹 ¬ 𝑥 ∈ 𝑍 ) |
| 5 |
|
fnrnfv |
⊢ ( 𝐹 Fn 𝐴 → ran 𝐹 = { 𝑥 ∣ ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) } ) |
| 6 |
5
|
eqabrd |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ran 𝐹 ↔ ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) ) |
| 7 |
6
|
biimpd |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ran 𝐹 → ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) ) |
| 8 |
7
|
ralrimiv |
⊢ ( 𝐹 Fn 𝐴 → ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) |
| 11 |
|
r19.29r |
⊢ ( ( ∃ 𝑥 ∈ ran 𝐹 ¬ 𝑥 ∈ 𝑍 ∧ ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) → ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) ) |
| 12 |
4 10 11
|
syl2anc |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) ) |
| 13 |
|
nfra1 |
⊢ Ⅎ 𝑝 ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } |
| 14 |
|
rsp |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ) |
| 15 |
|
vsnid |
⊢ 𝑝 ∈ { 𝑝 } |
| 16 |
|
eleq2 |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝 ∈ ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) ↔ 𝑝 ∈ { 𝑝 } ) ) |
| 17 |
15 16
|
mpbiri |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → 𝑝 ∈ ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) ) |
| 18 |
17
|
elin1d |
⊢ ( ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → 𝑝 ∈ ( 𝐹 ‘ 𝑝 ) ) |
| 19 |
14 18
|
syl6 |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝 ∈ 𝐴 → 𝑝 ∈ ( 𝐹 ‘ 𝑝 ) ) ) |
| 20 |
19
|
adantr |
⊢ ( ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ 𝑥 = ( 𝐹 ‘ 𝑝 ) ) → ( 𝑝 ∈ 𝐴 → 𝑝 ∈ ( 𝐹 ‘ 𝑝 ) ) ) |
| 21 |
|
eleq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑝 ) → ( 𝑝 ∈ 𝑥 ↔ 𝑝 ∈ ( 𝐹 ‘ 𝑝 ) ) ) |
| 22 |
21
|
adantl |
⊢ ( ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ 𝑥 = ( 𝐹 ‘ 𝑝 ) ) → ( 𝑝 ∈ 𝑥 ↔ 𝑝 ∈ ( 𝐹 ‘ 𝑝 ) ) ) |
| 23 |
20 22
|
sylibrd |
⊢ ( ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ∧ 𝑥 = ( 𝐹 ‘ 𝑝 ) ) → ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝑥 ) ) |
| 24 |
23
|
ex |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑥 = ( 𝐹 ‘ 𝑝 ) → ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝑥 ) ) ) |
| 25 |
24
|
com23 |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( 𝑝 ∈ 𝐴 → ( 𝑥 = ( 𝐹 ‘ 𝑝 ) → 𝑝 ∈ 𝑥 ) ) ) |
| 26 |
13 25
|
reximdai |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } → ( ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) → ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) → ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) → ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ) |
| 29 |
28
|
anim2d |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) → ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ) ) |
| 30 |
29
|
reximdv |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑥 = ( 𝐹 ‘ 𝑝 ) ) → ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ) ) |
| 31 |
12 30
|
mpd |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ) |
| 32 |
|
ancom |
⊢ ( ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ↔ ( ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 33 |
|
r19.41v |
⊢ ( ∃ 𝑝 ∈ 𝐴 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ↔ ( ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 34 |
32 33
|
bitr4i |
⊢ ( ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ↔ ∃ 𝑝 ∈ 𝐴 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 35 |
34
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ran 𝐹 ( ¬ 𝑥 ∈ 𝑍 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 ∈ 𝑥 ) ↔ ∃ 𝑥 ∈ ran 𝐹 ∃ 𝑝 ∈ 𝐴 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 36 |
31 35
|
sylib |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑥 ∈ ran 𝐹 ∃ 𝑝 ∈ 𝐴 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 37 |
|
rexcom |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ↔ ∃ 𝑥 ∈ ran 𝐹 ∃ 𝑝 ∈ 𝐴 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 38 |
36 37
|
sylibr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 39 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) |
| 40 |
39
|
19.3 |
⊢ ( ∀ 𝑥 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ↔ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 41 |
|
alral |
⊢ ( ∀ 𝑥 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 42 |
40 41
|
sylbir |
⊢ ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 43 |
42
|
reximi |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 44 |
38 43
|
syl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) |
| 45 |
|
nfv |
⊢ Ⅎ 𝑝 𝐹 Fn 𝐴 |
| 46 |
45 13
|
nfan |
⊢ Ⅎ 𝑝 ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) |
| 47 |
|
nfv |
⊢ Ⅎ 𝑝 𝑍 ⊊ ran 𝐹 |
| 48 |
46 47
|
nfan |
⊢ Ⅎ 𝑝 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) |
| 49 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ 𝑝 ∈ 𝐴 ) |
| 50 |
|
fvineqsneu |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ∀ 𝑝 ∈ 𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ) |
| 51 |
50
|
adantr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑝 ∈ 𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ) |
| 52 |
|
rsp |
⊢ ( ∀ 𝑝 ∈ 𝐴 ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 → ( 𝑝 ∈ 𝐴 → ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ) ) |
| 53 |
51 52
|
syl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( 𝑝 ∈ 𝐴 → ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ) ) |
| 54 |
53
|
adantrd |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ( 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹 ) → ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ) ) |
| 55 |
54
|
imp |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹 ) ) → ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ) |
| 56 |
|
reupick3 |
⊢ ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ∧ 𝑥 ∈ ran 𝐹 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) |
| 57 |
56
|
3expa |
⊢ ( ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) ∧ 𝑥 ∈ ran 𝐹 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) |
| 58 |
57
|
expcom |
⊢ ( 𝑥 ∈ ran 𝐹 → ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹 ) → ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) |
| 60 |
59
|
adantl |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹 ) ) → ( ( ∃! 𝑥 ∈ ran 𝐹 𝑝 ∈ 𝑥 ∧ ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) |
| 61 |
55 60
|
mpand |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑥 ∈ ran 𝐹 ) ) → ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) |
| 62 |
61
|
expr |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑥 ∈ ran 𝐹 → ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) ) |
| 63 |
49 62
|
ralrimi |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ 𝑝 ∈ 𝐴 ) → ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) |
| 64 |
63
|
ex |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( 𝑝 ∈ 𝐴 → ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) ) |
| 65 |
48 64
|
ralrimi |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) |
| 66 |
|
r19.29r |
⊢ ( ( ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) → ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) ) |
| 67 |
44 65 66
|
syl2anc |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) ) |
| 68 |
|
ralim |
⊢ ( ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) → ( ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) |
| 69 |
68
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) → ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) |
| 70 |
69
|
reximi |
⊢ ( ∃ 𝑝 ∈ 𝐴 ( ∀ 𝑥 ∈ ran 𝐹 ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ( ∃ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 ∧ ¬ 𝑥 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) ) → ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) |
| 71 |
67 70
|
syl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ) |
| 72 |
|
con2b |
⊢ ( ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ↔ ( 𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥 ) ) |
| 73 |
72
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ↔ ∀ 𝑥 ∈ ran 𝐹 ( 𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥 ) ) |
| 74 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ ran 𝐹 ( 𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ran 𝐹 → ( 𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
| 75 |
|
bi2.04 |
⊢ ( ( 𝑥 ∈ ran 𝐹 → ( 𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
| 76 |
75
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ran 𝐹 → ( 𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
| 77 |
73 74 76
|
3bitri |
⊢ ( ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
| 78 |
77
|
a1i |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) ) |
| 79 |
48 78
|
rexbid |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ ran 𝐹 ( 𝑝 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑍 ) ↔ ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) ) |
| 80 |
71 79
|
mpbid |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
| 81 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) |
| 82 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) |
| 83 |
81 82
|
nfan |
⊢ Ⅎ 𝑥 ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
| 84 |
|
pssss |
⊢ ( 𝑍 ⊊ ran 𝐹 → 𝑍 ⊆ ran 𝐹 ) |
| 85 |
|
df-ss |
⊢ ( 𝑍 ⊆ ran 𝐹 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹 ) ) |
| 86 |
84 85
|
sylib |
⊢ ( 𝑍 ⊊ ran 𝐹 → ∀ 𝑥 ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹 ) ) |
| 87 |
86
|
adantl |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑥 ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹 ) ) |
| 88 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝑍 𝑥 ∈ ran 𝐹 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹 ) ) |
| 89 |
87 88
|
sylibr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∀ 𝑥 ∈ 𝑍 𝑥 ∈ ran 𝐹 ) |
| 90 |
89
|
adantr |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) → ∀ 𝑥 ∈ 𝑍 𝑥 ∈ ran 𝐹 ) |
| 91 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝑍 𝑥 ∈ ran 𝐹 → ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹 ) ) |
| 92 |
90 91
|
syl |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) → ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ran 𝐹 ) ) |
| 93 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝑍 ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
| 94 |
93
|
biimpri |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) → ∀ 𝑥 ∈ 𝑍 ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) |
| 95 |
94
|
adantl |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) → ∀ 𝑥 ∈ 𝑍 ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) |
| 96 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝑍 ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) → ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
| 97 |
95 96
|
syl |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) → ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) |
| 98 |
92 97
|
mpdd |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) → ( 𝑥 ∈ 𝑍 → ¬ 𝑝 ∈ 𝑥 ) ) |
| 99 |
83 98
|
ralrimi |
⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) ) → ∀ 𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ) |
| 100 |
99
|
ex |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) → ∀ 𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ) ) |
| 101 |
100
|
a1d |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( 𝑝 ∈ 𝐴 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) → ∀ 𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ) ) ) |
| 102 |
48 101
|
reximdai |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ( ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ( 𝑥 ∈ 𝑍 → ( 𝑥 ∈ ran 𝐹 → ¬ 𝑝 ∈ 𝑥 ) ) → ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ) ) |
| 103 |
80 102
|
mpd |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ) |
| 104 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ↔ ¬ ∃ 𝑥 ∈ 𝑍 𝑝 ∈ 𝑥 ) |
| 105 |
104
|
rexbii |
⊢ ( ∃ 𝑝 ∈ 𝐴 ∀ 𝑥 ∈ 𝑍 ¬ 𝑝 ∈ 𝑥 ↔ ∃ 𝑝 ∈ 𝐴 ¬ ∃ 𝑥 ∈ 𝑍 𝑝 ∈ 𝑥 ) |
| 106 |
103 105
|
sylib |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ¬ ∃ 𝑥 ∈ 𝑍 𝑝 ∈ 𝑥 ) |
| 107 |
|
eluni2 |
⊢ ( 𝑝 ∈ ∪ 𝑍 ↔ ∃ 𝑥 ∈ 𝑍 𝑝 ∈ 𝑥 ) |
| 108 |
107
|
notbii |
⊢ ( ¬ 𝑝 ∈ ∪ 𝑍 ↔ ¬ ∃ 𝑥 ∈ 𝑍 𝑝 ∈ 𝑥 ) |
| 109 |
108
|
rexbii |
⊢ ( ∃ 𝑝 ∈ 𝐴 ¬ 𝑝 ∈ ∪ 𝑍 ↔ ∃ 𝑝 ∈ 𝐴 ¬ ∃ 𝑥 ∈ 𝑍 𝑝 ∈ 𝑥 ) |
| 110 |
106 109
|
sylibr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ∃ 𝑝 ∈ 𝐴 ¬ 𝑝 ∈ ∪ 𝑍 ) |
| 111 |
|
dfss3 |
⊢ ( 𝐴 ⊆ ∪ 𝑍 ↔ ∀ 𝑝 ∈ 𝐴 𝑝 ∈ ∪ 𝑍 ) |
| 112 |
|
dfral2 |
⊢ ( ∀ 𝑝 ∈ 𝐴 𝑝 ∈ ∪ 𝑍 ↔ ¬ ∃ 𝑝 ∈ 𝐴 ¬ 𝑝 ∈ ∪ 𝑍 ) |
| 113 |
111 112
|
bitri |
⊢ ( 𝐴 ⊆ ∪ 𝑍 ↔ ¬ ∃ 𝑝 ∈ 𝐴 ¬ 𝑝 ∈ ∪ 𝑍 ) |
| 114 |
113
|
con2bii2 |
⊢ ( ¬ 𝐴 ⊆ ∪ 𝑍 ↔ ∃ 𝑝 ∈ 𝐴 ¬ 𝑝 ∈ ∪ 𝑍 ) |
| 115 |
110 114
|
sylibr |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ 𝑍 ⊊ ran 𝐹 ) → ¬ 𝐴 ⊆ ∪ 𝑍 ) |
| 116 |
115
|
ex |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑍 ⊊ ran 𝐹 → ¬ 𝐴 ⊆ ∪ 𝑍 ) ) |
| 117 |
116
|
con2d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝐴 ⊆ ∪ 𝑍 → ¬ 𝑍 ⊊ ran 𝐹 ) ) |
| 118 |
|
npss |
⊢ ( ¬ 𝑍 ⊊ ran 𝐹 ↔ ( 𝑍 ⊆ ran 𝐹 → 𝑍 = ran 𝐹 ) ) |
| 119 |
117 118
|
imbitrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝐴 ⊆ ∪ 𝑍 → ( 𝑍 ⊆ ran 𝐹 → 𝑍 = ran 𝐹 ) ) ) |
| 120 |
119
|
com23 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) → ( 𝑍 ⊆ ran 𝐹 → ( 𝐴 ⊆ ∪ 𝑍 → 𝑍 = ran 𝐹 ) ) ) |
| 121 |
120
|
imp32 |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑝 ∈ 𝐴 ( ( 𝐹 ‘ 𝑝 ) ∩ 𝐴 ) = { 𝑝 } ) ∧ ( 𝑍 ⊆ ran 𝐹 ∧ 𝐴 ⊆ ∪ 𝑍 ) ) → 𝑍 = ran 𝐹 ) |