| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 | 
						
							| 2 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 3 |  | nfiu1 | ⊢ Ⅎ 𝑥 ∪  𝑥  ∈  𝐴 𝐵 | 
						
							| 4 |  | simpr | ⊢ ( ( ( 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 5 |  | rsp | ⊢ ( ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 7 |  | eleq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 8 | 7 | imbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  ↔  ( 𝑥  ∈  𝐴  →  𝑦  ∈  𝐵 ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 )  →  ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  ↔  ( 𝑥  ∈  𝐴  →  𝑦  ∈  𝐵 ) ) ) | 
						
							| 10 | 6 9 | mpbid | ⊢ ( ( 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  𝐴  →  𝑦  ∈  𝐵 ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( ( 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑦  ∈  𝐵 ) | 
						
							| 12 |  | rspe | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) | 
						
							| 13 | 4 11 12 | syl2anc | ⊢ ( ( ( 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) | 
						
							| 14 |  | abid | ⊢ ( 𝑦  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 }  ↔  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) | 
						
							| 15 | 13 14 | sylibr | ⊢ ( ( ( 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑦  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 } ) | 
						
							| 16 |  | eleq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 }  ↔  𝑦  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 } ) ) | 
						
							| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 }  ↔  𝑦  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 } ) ) | 
						
							| 18 | 15 17 | mpbird | ⊢ ( ( ( 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 } ) | 
						
							| 19 |  | df-iun | ⊢ ∪  𝑥  ∈  𝐴 𝐵  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 } | 
						
							| 20 | 18 19 | eleqtrrdi | ⊢ ( ( ( 𝑥  =  𝑦  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 21 | 20 | expl | ⊢ ( 𝑥  =  𝑦  →  ( ( ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) ) | 
						
							| 22 | 21 | equcoms | ⊢ ( 𝑦  =  𝑥  →  ( ( ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) ) | 
						
							| 23 | 22 | vtocleg | ⊢ ( 𝑥  ∈  𝐴  →  ( ( ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) ) | 
						
							| 24 | 23 | anabsi7 | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 25 | 24 | ex | ⊢ ( ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) ) | 
						
							| 26 | 1 2 3 25 | ssrd | ⊢ ( ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵  →  𝐴  ⊆  ∪  𝑥  ∈  𝐴 𝐵 ) |