Metamath Proof Explorer


Theorem ralssiun

Description: The index set of an indexed union is a subset of the union when each B contains its index. (Contributed by ML, 16-Dec-2020)

Ref Expression
Assertion ralssiun ( ∀ 𝑥𝐴 𝑥𝐵𝐴 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 nfra1 𝑥𝑥𝐴 𝑥𝐵
2 nfcv 𝑥 𝐴
3 nfiu1 𝑥 𝑥𝐴 𝐵
4 simpr ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥𝐴 𝑥𝐵 ) ∧ 𝑥𝐴 ) → 𝑥𝐴 )
5 rsp ( ∀ 𝑥𝐴 𝑥𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
6 5 adantl ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥𝐴 𝑥𝐵 ) → ( 𝑥𝐴𝑥𝐵 ) )
7 eleq1 ( 𝑥 = 𝑦 → ( 𝑥𝐵𝑦𝐵 ) )
8 7 imbi2d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝑥𝐵 ) ↔ ( 𝑥𝐴𝑦𝐵 ) ) )
9 8 adantr ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥𝐴 𝑥𝐵 ) → ( ( 𝑥𝐴𝑥𝐵 ) ↔ ( 𝑥𝐴𝑦𝐵 ) ) )
10 6 9 mpbid ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥𝐴 𝑥𝐵 ) → ( 𝑥𝐴𝑦𝐵 ) )
11 10 imp ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥𝐴 𝑥𝐵 ) ∧ 𝑥𝐴 ) → 𝑦𝐵 )
12 rspe ( ( 𝑥𝐴𝑦𝐵 ) → ∃ 𝑥𝐴 𝑦𝐵 )
13 4 11 12 syl2anc ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥𝐴 𝑥𝐵 ) ∧ 𝑥𝐴 ) → ∃ 𝑥𝐴 𝑦𝐵 )
14 abid ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } ↔ ∃ 𝑥𝐴 𝑦𝐵 )
15 13 14 sylibr ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥𝐴 𝑥𝐵 ) ∧ 𝑥𝐴 ) → 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } )
16 eleq1 ( 𝑥 = 𝑦 → ( 𝑥 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } ↔ 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } ) )
17 16 ad2antrr ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥𝐴 𝑥𝐵 ) ∧ 𝑥𝐴 ) → ( 𝑥 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } ↔ 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } ) )
18 15 17 mpbird ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥𝐴 𝑥𝐵 ) ∧ 𝑥𝐴 ) → 𝑥 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 } )
19 df-iun 𝑥𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐵 }
20 18 19 eleqtrrdi ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥𝐴 𝑥𝐵 ) ∧ 𝑥𝐴 ) → 𝑥 𝑥𝐴 𝐵 )
21 20 expl ( 𝑥 = 𝑦 → ( ( ∀ 𝑥𝐴 𝑥𝐵𝑥𝐴 ) → 𝑥 𝑥𝐴 𝐵 ) )
22 21 equcoms ( 𝑦 = 𝑥 → ( ( ∀ 𝑥𝐴 𝑥𝐵𝑥𝐴 ) → 𝑥 𝑥𝐴 𝐵 ) )
23 22 vtocleg ( 𝑥𝐴 → ( ( ∀ 𝑥𝐴 𝑥𝐵𝑥𝐴 ) → 𝑥 𝑥𝐴 𝐵 ) )
24 23 anabsi7 ( ( ∀ 𝑥𝐴 𝑥𝐵𝑥𝐴 ) → 𝑥 𝑥𝐴 𝐵 )
25 24 ex ( ∀ 𝑥𝐴 𝑥𝐵 → ( 𝑥𝐴𝑥 𝑥𝐴 𝐵 ) )
26 1 2 3 25 ssrd ( ∀ 𝑥𝐴 𝑥𝐵𝐴 𝑥𝐴 𝐵 )