| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 |
| 2 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 3 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 |
| 4 |
|
simpr |
⊢ ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 5 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 7 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 8 |
7
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) ) |
| 10 |
6 9
|
mpbid |
⊢ ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) |
| 11 |
10
|
imp |
⊢ ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) |
| 12 |
|
rspe |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 13 |
4 11 12
|
syl2anc |
⊢ ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 14 |
|
abid |
⊢ ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 15 |
13 14
|
sylibr |
⊢ ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ) |
| 16 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ↔ 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ) ) |
| 17 |
16
|
ad2antrr |
⊢ ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ↔ 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ) ) |
| 18 |
15 17
|
mpbird |
⊢ ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ) |
| 19 |
|
df-iun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } |
| 20 |
18 19
|
eleqtrrdi |
⊢ ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 21 |
20
|
expl |
⊢ ( 𝑥 = 𝑦 → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 22 |
21
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 23 |
22
|
vtocleg |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 24 |
23
|
anabsi7 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 25 |
24
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 26 |
1 2 3 25
|
ssrd |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |