Step |
Hyp |
Ref |
Expression |
1 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 |
2 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 |
4 |
|
simpr |
⊢ ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
5 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
7 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) ) |
10 |
6 9
|
mpbid |
⊢ ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) |
11 |
10
|
imp |
⊢ ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) |
12 |
|
rspe |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
13 |
4 11 12
|
syl2anc |
⊢ ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
14 |
|
abid |
⊢ ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
15 |
13 14
|
sylibr |
⊢ ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ) |
16 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ↔ 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ) ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ↔ 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ) ) |
18 |
15 17
|
mpbird |
⊢ ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } ) |
19 |
|
df-iun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 } |
20 |
18 19
|
eleqtrrdi |
⊢ ( ( ( 𝑥 = 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
21 |
20
|
expl |
⊢ ( 𝑥 = 𝑦 → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
22 |
21
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
23 |
22
|
vtocleg |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
24 |
23
|
anabsi7 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
25 |
24
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
26 |
1 2 3 25
|
ssrd |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |