Metamath Proof Explorer


Theorem lpss

Description: The limit points of a subset are included in the base set. (Contributed by NM, 9-Nov-2007)

Ref Expression
Hypothesis lpfval.1 𝑋 = 𝐽
Assertion lpss ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 )

Proof

Step Hyp Ref Expression
1 lpfval.1 𝑋 = 𝐽
2 1 lpsscls ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )
3 1 clsss3 ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 )
4 2 3 sstrd ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 )