Metamath Proof Explorer


Theorem lpss

Description: The limit points of a subset are included in the base set. (Contributed by NM, 9-Nov-2007)

Ref Expression
Hypothesis lpfval.1
|- X = U. J
Assertion lpss
|- ( ( J e. Top /\ S C_ X ) -> ( ( limPt ` J ) ` S ) C_ X )

Proof

Step Hyp Ref Expression
1 lpfval.1
 |-  X = U. J
2 1 lpsscls
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( limPt ` J ) ` S ) C_ ( ( cls ` J ) ` S ) )
3 1 clsss3
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X )
4 2 3 sstrd
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( limPt ` J ) ` S ) C_ X )