Step |
Hyp |
Ref |
Expression |
1 |
|
lpfval.1 |
|- X = U. J |
2 |
1
|
lpval |
|- ( ( J e. Top /\ S C_ X ) -> ( ( limPt ` J ) ` S ) = { x | x e. ( ( cls ` J ) ` ( S \ { x } ) ) } ) |
3 |
|
difss |
|- ( S \ { x } ) C_ S |
4 |
1
|
clsss |
|- ( ( J e. Top /\ S C_ X /\ ( S \ { x } ) C_ S ) -> ( ( cls ` J ) ` ( S \ { x } ) ) C_ ( ( cls ` J ) ` S ) ) |
5 |
3 4
|
mp3an3 |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` ( S \ { x } ) ) C_ ( ( cls ` J ) ` S ) ) |
6 |
5
|
sseld |
|- ( ( J e. Top /\ S C_ X ) -> ( x e. ( ( cls ` J ) ` ( S \ { x } ) ) -> x e. ( ( cls ` J ) ` S ) ) ) |
7 |
6
|
abssdv |
|- ( ( J e. Top /\ S C_ X ) -> { x | x e. ( ( cls ` J ) ` ( S \ { x } ) ) } C_ ( ( cls ` J ) ` S ) ) |
8 |
2 7
|
eqsstrd |
|- ( ( J e. Top /\ S C_ X ) -> ( ( limPt ` J ) ` S ) C_ ( ( cls ` J ) ` S ) ) |