Metamath Proof Explorer


Theorem pjhfo

Description: A projection maps onto its subspace. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjhfo HCprojH:ontoH

Proof

Step Hyp Ref Expression
1 fveq2 H=ifHCH0projH=projifHCH0
2 foeq1 projH=projifHCH0projH:ontoHprojifHCH0:ontoH
3 1 2 syl H=ifHCH0projH:ontoHprojifHCH0:ontoH
4 foeq3 H=ifHCH0projifHCH0:ontoHprojifHCH0:ontoifHCH0
5 h0elch 0C
6 5 elimel ifHCH0C
7 6 pjfoi projifHCH0:ontoifHCH0
8 3 4 7 dedth2v HCprojH:ontoH