Metamath Proof Explorer


Theorem plusffn

Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses plusffn.1 B=BaseG
plusffn.2 ˙=+𝑓G
Assertion plusffn ˙FnB×B

Proof

Step Hyp Ref Expression
1 plusffn.1 B=BaseG
2 plusffn.2 ˙=+𝑓G
3 eqid +G=+G
4 1 3 2 plusffval ˙=xB,yBx+Gy
5 ovex x+GyV
6 4 5 fnmpoi ˙FnB×B