Metamath Proof Explorer


Theorem pm10.251

Description: Theorem *10.251 in WhiteheadRussell p. 149. (Contributed by Andrew Salmon, 17-Jun-2011)

Ref Expression
Assertion pm10.251 x ¬ φ ¬ x φ

Proof

Step Hyp Ref Expression
1 alnex x ¬ φ ¬ x φ
2 19.2 x φ x φ
3 2 con3i ¬ x φ ¬ x φ
4 1 3 sylbi x ¬ φ ¬ x φ