Description: Theorem *10.251 in WhiteheadRussell p. 149. (Contributed by Andrew Salmon, 17-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm10.251 | |- ( A. x -. ph -> -. A. x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex | |- ( A. x -. ph <-> -. E. x ph ) |
|
2 | 19.2 | |- ( A. x ph -> E. x ph ) |
|
3 | 2 | con3i | |- ( -. E. x ph -> -. A. x ph ) |
4 | 1 3 | sylbi | |- ( A. x -. ph -> -. A. x ph ) |