Description: Theorem *10.251 in WhiteheadRussell p. 149. (Contributed by Andrew Salmon, 17-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm10.251 | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ¬ ∀ 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) | |
| 2 | 19.2 | ⊢ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜑 ) | |
| 3 | 2 | con3i | ⊢ ( ¬ ∃ 𝑥 𝜑 → ¬ ∀ 𝑥 𝜑 ) |
| 4 | 1 3 | sylbi | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ¬ ∀ 𝑥 𝜑 ) |