Description: Theorem *10.251 in WhiteheadRussell p. 149. (Contributed by Andrew Salmon, 17-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm10.251 | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ¬ ∀ 𝑥 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) | |
2 | 19.2 | ⊢ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜑 ) | |
3 | 2 | con3i | ⊢ ( ¬ ∃ 𝑥 𝜑 → ¬ ∀ 𝑥 𝜑 ) |
4 | 1 3 | sylbi | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ¬ ∀ 𝑥 𝜑 ) |