Metamath Proof Explorer


Theorem pm10.251

Description: Theorem *10.251 in WhiteheadRussell p. 149. (Contributed by Andrew Salmon, 17-Jun-2011)

Ref Expression
Assertion pm10.251 ( ∀ 𝑥 ¬ 𝜑 → ¬ ∀ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 alnex ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 )
2 19.2 ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜑 )
3 2 con3i ( ¬ ∃ 𝑥 𝜑 → ¬ ∀ 𝑥 𝜑 )
4 1 3 sylbi ( ∀ 𝑥 ¬ 𝜑 → ¬ ∀ 𝑥 𝜑 )