Metamath Proof Explorer


Theorem pm11.63

Description: Theorem *11.63 in WhiteheadRussell p. 166. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm11.63 ¬ x y φ x y φ ψ

Proof

Step Hyp Ref Expression
1 2nexaln ¬ x y φ x y ¬ φ
2 pm2.21 ¬ φ φ ψ
3 2 2alimi x y ¬ φ x y φ ψ
4 1 3 sylbi ¬ x y φ x y φ ψ