Metamath Proof Explorer


Theorem pm11.63

Description: Theorem *11.63 in WhiteheadRussell p. 166. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm11.63 ( ¬ ∃ 𝑥𝑦 𝜑 → ∀ 𝑥𝑦 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 2nexaln ( ¬ ∃ 𝑥𝑦 𝜑 ↔ ∀ 𝑥𝑦 ¬ 𝜑 )
2 pm2.21 ( ¬ 𝜑 → ( 𝜑𝜓 ) )
3 2 2alimi ( ∀ 𝑥𝑦 ¬ 𝜑 → ∀ 𝑥𝑦 ( 𝜑𝜓 ) )
4 1 3 sylbi ( ¬ ∃ 𝑥𝑦 𝜑 → ∀ 𝑥𝑦 ( 𝜑𝜓 ) )