Description: Theorem *11.63 in WhiteheadRussell p. 166. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm11.63 | ⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nexaln | ⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) | |
2 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜓 ) ) | |
3 | 2 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ) |
4 | 1 3 | sylbi | ⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ) |