Metamath Proof Explorer


Theorem pm13.196a

Description: Theorem *13.196 in WhiteheadRussell p. 179. The only difference is the position of the substituted variable. (Contributed by Andrew Salmon, 3-Jun-2011)

Ref Expression
Assertion pm13.196a ¬φyyxφyx

Proof

Step Hyp Ref Expression
1 sbelx ¬φyy=xyx¬φ
2 sbalex yy=xyx¬φyy=xyx¬φ
3 sbn yx¬φ¬yxφ
4 3 imbi2i y=xyx¬φy=x¬yxφ
5 con2b y=x¬yxφyxφ¬y=x
6 df-ne yx¬y=x
7 6 bicomi ¬y=xyx
8 7 imbi2i yxφ¬y=xyxφyx
9 4 5 8 3bitri y=xyx¬φyxφyx
10 9 albii yy=xyx¬φyyxφyx
11 1 2 10 3bitri ¬φyyxφyx