Step |
Hyp |
Ref |
Expression |
1 |
|
sbelx |
⊢ ( ¬ 𝜑 ↔ ∃ 𝑦 ( 𝑦 = 𝑥 ∧ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
2 |
|
sbalex |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝑥 ∧ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
3 |
|
sbn |
⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) |
4 |
3
|
imbi2i |
⊢ ( ( 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ↔ ( 𝑦 = 𝑥 → ¬ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
5 |
|
con2b |
⊢ ( ( 𝑦 = 𝑥 → ¬ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → ¬ 𝑦 = 𝑥 ) ) |
6 |
|
df-ne |
⊢ ( 𝑦 ≠ 𝑥 ↔ ¬ 𝑦 = 𝑥 ) |
7 |
6
|
bicomi |
⊢ ( ¬ 𝑦 = 𝑥 ↔ 𝑦 ≠ 𝑥 ) |
8 |
7
|
imbi2i |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 → ¬ 𝑦 = 𝑥 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 ≠ 𝑥 ) ) |
9 |
4 5 8
|
3bitri |
⊢ ( ( 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 ≠ 𝑥 ) ) |
10 |
9
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 ≠ 𝑥 ) ) |
11 |
1 2 10
|
3bitri |
⊢ ( ¬ 𝜑 ↔ ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 ≠ 𝑥 ) ) |