| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-sb | ⊢ ( [ 𝑡  /  𝑥 ] ¬  𝜑  ↔  ∀ 𝑦 ( 𝑦  =  𝑡  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  ¬  𝜑 ) ) ) | 
						
							| 2 |  | alinexa | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝑦  →  ¬  𝜑 )  ↔  ¬  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) ) | 
						
							| 3 | 2 | imbi2i | ⊢ ( ( 𝑦  =  𝑡  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  ¬  𝜑 ) )  ↔  ( 𝑦  =  𝑡  →  ¬  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 4 | 3 | albii | ⊢ ( ∀ 𝑦 ( 𝑦  =  𝑡  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  ¬  𝜑 ) )  ↔  ∀ 𝑦 ( 𝑦  =  𝑡  →  ¬  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 5 |  | alinexa | ⊢ ( ∀ 𝑦 ( 𝑦  =  𝑡  →  ¬  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) )  ↔  ¬  ∃ 𝑦 ( 𝑦  =  𝑡  ∧  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 6 |  | dfsb7 | ⊢ ( [ 𝑡  /  𝑥 ] 𝜑  ↔  ∃ 𝑦 ( 𝑦  =  𝑡  ∧  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 7 | 5 6 | xchbinxr | ⊢ ( ∀ 𝑦 ( 𝑦  =  𝑡  →  ¬  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) )  ↔  ¬  [ 𝑡  /  𝑥 ] 𝜑 ) | 
						
							| 8 | 1 4 7 | 3bitri | ⊢ ( [ 𝑡  /  𝑥 ] ¬  𝜑  ↔  ¬  [ 𝑡  /  𝑥 ] 𝜑 ) |