Step |
Hyp |
Ref |
Expression |
1 |
|
df-sb |
⊢ ( [ 𝑡 / 𝑥 ] ¬ 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ) |
2 |
|
alinexa |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |
3 |
2
|
imbi2i |
⊢ ( ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ↔ ( 𝑦 = 𝑡 → ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
4 |
3
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑦 → ¬ 𝜑 ) ) ↔ ∀ 𝑦 ( 𝑦 = 𝑡 → ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
5 |
|
alinexa |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑡 → ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ↔ ¬ ∃ 𝑦 ( 𝑦 = 𝑡 ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
6 |
|
dfsb7 |
⊢ ( [ 𝑡 / 𝑥 ] 𝜑 ↔ ∃ 𝑦 ( 𝑦 = 𝑡 ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
7 |
5 6
|
xchbinxr |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑡 → ¬ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ↔ ¬ [ 𝑡 / 𝑥 ] 𝜑 ) |
8 |
1 4 7
|
3bitri |
⊢ ( [ 𝑡 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑡 / 𝑥 ] 𝜑 ) |