Metamath Proof Explorer


Theorem sbn

Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993) (Proof shortened by Wolf Lammen, 30-Apr-2018) Revise df-sb . (Revised by BJ, 25-Dec-2020)

Ref Expression
Assertion sbn tx¬φ¬txφ

Proof

Step Hyp Ref Expression
1 df-sb tx¬φyy=txx=y¬φ
2 alinexa xx=y¬φ¬xx=yφ
3 2 imbi2i y=txx=y¬φy=t¬xx=yφ
4 3 albii yy=txx=y¬φyy=t¬xx=yφ
5 alinexa yy=t¬xx=yφ¬yy=txx=yφ
6 dfsb7 txφyy=txx=yφ
7 5 6 xchbinxr yy=t¬xx=yφ¬txφ
8 1 4 7 3bitri tx¬φ¬txφ