Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Principia Mathematica * 13 and * 14
pm14.122a
Next ⟩
pm14.122b
Metamath Proof Explorer
Ascii
Unicode
Theorem
pm14.122a
Description:
Theorem *14.122 in
WhiteheadRussell
p. 185.
(Contributed by
Andrew Salmon
, 9-Jun-2011)
Ref
Expression
Assertion
pm14.122a
⊢
A
∈
V
→
∀
x
φ
↔
x
=
A
↔
∀
x
φ
→
x
=
A
∧
[
˙
A
/
x
]
˙
φ
Proof
Step
Hyp
Ref
Expression
1
albiim
⊢
∀
x
φ
↔
x
=
A
↔
∀
x
φ
→
x
=
A
∧
∀
x
x
=
A
→
φ
2
sbc6g
⊢
A
∈
V
→
[
˙
A
/
x
]
˙
φ
↔
∀
x
x
=
A
→
φ
3
2
bicomd
⊢
A
∈
V
→
∀
x
x
=
A
→
φ
↔
[
˙
A
/
x
]
˙
φ
4
3
anbi2d
⊢
A
∈
V
→
∀
x
φ
→
x
=
A
∧
∀
x
x
=
A
→
φ
↔
∀
x
φ
→
x
=
A
∧
[
˙
A
/
x
]
˙
φ
5
1
4
syl5bb
⊢
A
∈
V
→
∀
x
φ
↔
x
=
A
↔
∀
x
φ
→
x
=
A
∧
[
˙
A
/
x
]
˙
φ