Metamath Proof Explorer


Theorem pm14.122a

Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)

Ref Expression
Assertion pm14.122a A V x φ x = A x φ x = A [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 albiim x φ x = A x φ x = A x x = A φ
2 sbc6g A V [˙A / x]˙ φ x x = A φ
3 2 bicomd A V x x = A φ [˙A / x]˙ φ
4 3 anbi2d A V x φ x = A x x = A φ x φ x = A [˙A / x]˙ φ
5 1 4 syl5bb A V x φ x = A x φ x = A [˙A / x]˙ φ