Metamath Proof Explorer


Theorem pm14.122a

Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)

Ref Expression
Assertion pm14.122a AVxφx=Axφx=A[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 albiim xφx=Axφx=Axx=Aφ
2 sbc6g AV[˙A/x]˙φxx=Aφ
3 2 bicomd AVxx=Aφ[˙A/x]˙φ
4 3 anbi2d AVxφx=Axx=Aφxφx=A[˙A/x]˙φ
5 1 4 bitrid AVxφx=Axφx=A[˙A/x]˙φ