Metamath Proof Explorer


Theorem pm14.123a

Description: Theorem *14.123 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)

Ref Expression
Assertion pm14.123a AVBWzwφz=Aw=Bzwφz=Aw=B[˙A/z]˙[˙B/w]˙φ

Proof

Step Hyp Ref Expression
1 2albiim zwφz=Aw=Bzwφz=Aw=Bzwz=Aw=Bφ
2 2sbc6g AVBWzwz=Aw=Bφ[˙A/z]˙[˙B/w]˙φ
3 2 anbi2d AVBWzwφz=Aw=Bzwz=Aw=Bφzwφz=Aw=B[˙A/z]˙[˙B/w]˙φ
4 1 3 bitrid AVBWzwφz=Aw=Bzwφz=Aw=B[˙A/z]˙[˙B/w]˙φ