Metamath Proof Explorer


Theorem pm2.61d2

Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypotheses pm2.61d2.1 φ ¬ ψ χ
pm2.61d2.2 ψ χ
Assertion pm2.61d2 φ χ

Proof

Step Hyp Ref Expression
1 pm2.61d2.1 φ ¬ ψ χ
2 pm2.61d2.2 ψ χ
3 2 a1i φ ψ χ
4 3 1 pm2.61d φ χ