Metamath Proof Explorer


Theorem pm2.61d2

Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypotheses pm2.61d2.1 φ¬ψχ
pm2.61d2.2 ψχ
Assertion pm2.61d2 φχ

Proof

Step Hyp Ref Expression
1 pm2.61d2.1 φ¬ψχ
2 pm2.61d2.2 ψχ
3 2 a1i φψχ
4 3 1 pm2.61d φχ