Metamath Proof Explorer


Theorem pm2.61ian

Description: Elimination of an antecedent. (Contributed by NM, 1-Jan-2005)

Ref Expression
Hypotheses pm2.61ian.1 φψχ
pm2.61ian.2 ¬φψχ
Assertion pm2.61ian ψχ

Proof

Step Hyp Ref Expression
1 pm2.61ian.1 φψχ
2 pm2.61ian.2 ¬φψχ
3 1 ex φψχ
4 2 ex ¬φψχ
5 3 4 pm2.61i ψχ