Metamath Proof Explorer


Theorem pm2.61iine

Description: Equality version of pm2.61ii . (Contributed by Scott Fenton, 13-Jun-2013) (Proof shortened by Wolf Lammen, 25-Nov-2019)

Ref Expression
Hypotheses pm2.61iine.1 ACBDφ
pm2.61iine.2 A=Cφ
pm2.61iine.3 B=Dφ
Assertion pm2.61iine φ

Proof

Step Hyp Ref Expression
1 pm2.61iine.1 ACBDφ
2 pm2.61iine.2 A=Cφ
3 pm2.61iine.3 B=Dφ
4 3 adantl ACB=Dφ
5 4 1 pm2.61dane ACφ
6 2 5 pm2.61ine φ