Metamath Proof Explorer


Theorem pm2.65ni

Description: Inference rule for proof by contradiction. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses pm2.65ni.1 ¬ φ ψ
pm2.65ni.2 ¬ φ ¬ ψ
Assertion pm2.65ni φ

Proof

Step Hyp Ref Expression
1 pm2.65ni.1 ¬ φ ψ
2 pm2.65ni.2 ¬ φ ¬ ψ
3 1 2 pm2.65i ¬ ¬ φ
4 3 notnotri φ