Metamath Proof Explorer


Theorem pm2.65ni

Description: Inference rule for proof by contradiction. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses pm2.65ni.1
|- ( -. ph -> ps )
pm2.65ni.2
|- ( -. ph -> -. ps )
Assertion pm2.65ni
|- ph

Proof

Step Hyp Ref Expression
1 pm2.65ni.1
 |-  ( -. ph -> ps )
2 pm2.65ni.2
 |-  ( -. ph -> -. ps )
3 1 2 pm2.65i
 |-  -. -. ph
4 3 notnotri
 |-  ph