Metamath Proof Explorer


Theorem pwssfi

Description: Every element of the power set of A is finite if and only if A is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion pwssfi
|- ( A e. V -> ( A e. Fin <-> ~P A C_ Fin ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( A e. Fin /\ x e. ~P A ) -> A e. Fin )
2 elpwi
 |-  ( x e. ~P A -> x C_ A )
3 2 adantl
 |-  ( ( A e. Fin /\ x e. ~P A ) -> x C_ A )
4 ssfi
 |-  ( ( A e. Fin /\ x C_ A ) -> x e. Fin )
5 1 3 4 syl2anc
 |-  ( ( A e. Fin /\ x e. ~P A ) -> x e. Fin )
6 5 ralrimiva
 |-  ( A e. Fin -> A. x e. ~P A x e. Fin )
7 dfss3
 |-  ( ~P A C_ Fin <-> A. x e. ~P A x e. Fin )
8 6 7 sylibr
 |-  ( A e. Fin -> ~P A C_ Fin )
9 8 a1i
 |-  ( A e. V -> ( A e. Fin -> ~P A C_ Fin ) )
10 pwidg
 |-  ( A e. V -> A e. ~P A )
11 10 adantr
 |-  ( ( A e. V /\ ~P A C_ Fin ) -> A e. ~P A )
12 7 biimpi
 |-  ( ~P A C_ Fin -> A. x e. ~P A x e. Fin )
13 12 adantl
 |-  ( ( A e. V /\ ~P A C_ Fin ) -> A. x e. ~P A x e. Fin )
14 eleq1
 |-  ( x = A -> ( x e. Fin <-> A e. Fin ) )
15 14 rspcva
 |-  ( ( A e. ~P A /\ A. x e. ~P A x e. Fin ) -> A e. Fin )
16 11 13 15 syl2anc
 |-  ( ( A e. V /\ ~P A C_ Fin ) -> A e. Fin )
17 16 ex
 |-  ( A e. V -> ( ~P A C_ Fin -> A e. Fin ) )
18 9 17 impbid
 |-  ( A e. V -> ( A e. Fin <-> ~P A C_ Fin ) )