Metamath Proof Explorer


Theorem pm2.8

Description: Theorem *2.8 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Jan-2013)

Ref Expression
Assertion pm2.8 φψ¬ψχφχ

Proof

Step Hyp Ref Expression
1 pm2.53 φψ¬φψ
2 1 con1d φψ¬ψφ
3 2 orim1d φψ¬ψχφχ