Description: Theorem *2.8 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.8 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ( ¬ 𝜓 ∨ 𝜒 ) → ( 𝜑 ∨ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ¬ 𝜑 → 𝜓 ) ) | |
2 | 1 | con1d | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ¬ 𝜓 → 𝜑 ) ) |
3 | 2 | orim1d | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ( ¬ 𝜓 ∨ 𝜒 ) → ( 𝜑 ∨ 𝜒 ) ) ) |