Metamath Proof Explorer


Theorem pm5.32dra

Description: Reverse distribution of implication over biconditional (deduction form). (Contributed by Zhi Wang, 6-Sep-2024)

Ref Expression
Hypothesis pm5.32dra.1 φ ψ χ ψ θ
Assertion pm5.32dra φ ψ χ θ

Proof

Step Hyp Ref Expression
1 pm5.32dra.1 φ ψ χ ψ θ
2 pm5.32 ψ χ θ ψ χ ψ θ
3 1 2 sylibr φ ψ χ θ
4 3 imp φ ψ χ θ