Metamath Proof Explorer


Theorem pm5.61

Description: Theorem *5.61 of WhiteheadRussell p. 125. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 30-Jun-2013)

Ref Expression
Assertion pm5.61 φψ¬ψφ¬ψ

Proof

Step Hyp Ref Expression
1 orel2 ¬ψφψφ
2 orc φφψ
3 1 2 impbid1 ¬ψφψφ
4 3 pm5.32ri φψ¬ψφ¬ψ