Metamath Proof Explorer


Theorem pmapssbaN

Description: A weakening of pmapssat to shorten some proofs. (Contributed by NM, 7-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmapssba.b B=BaseK
pmapssba.m M=pmapK
Assertion pmapssbaN KCXBMXB

Proof

Step Hyp Ref Expression
1 pmapssba.b B=BaseK
2 pmapssba.m M=pmapK
3 eqid AtomsK=AtomsK
4 1 3 2 pmapssat KCXBMXAtomsK
5 1 3 atssbase AtomsKB
6 4 5 sstrdi KCXBMXB