Description: A weakening of pmapssat to shorten some proofs. (Contributed by NM, 7-Mar-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapssba.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmapssba.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmapssbaN | ⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapssba.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmapssba.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
| 4 | 1 3 2 | pmapssat | ⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ ( Atoms ‘ 𝐾 ) ) |
| 5 | 1 3 | atssbase | ⊢ ( Atoms ‘ 𝐾 ) ⊆ 𝐵 |
| 6 | 4 5 | sstrdi | ⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐵 ) |