Metamath Proof Explorer


Theorem pmtrdifwrdellem1

Description: Lemma 1 for pmtrdifwrdel . (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T=ranpmTrspNK
pmtrdifel.r R=ranpmTrspN
pmtrdifwrdel.0 U=x0..^WpmTrspNdomWxI
Assertion pmtrdifwrdellem1 WWordTUWordR

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T=ranpmTrspNK
2 pmtrdifel.r R=ranpmTrspN
3 pmtrdifwrdel.0 U=x0..^WpmTrspNdomWxI
4 wrdsymbcl WWordTx0..^WWxT
5 eqid pmTrspNdomWxI=pmTrspNdomWxI
6 1 2 5 pmtrdifellem1 WxTpmTrspNdomWxIR
7 4 6 syl WWordTx0..^WpmTrspNdomWxIR
8 7 3 fmptd WWordTU:0..^WR
9 iswrdi U:0..^WRUWordR
10 8 9 syl WWordTUWordR