Metamath Proof Explorer


Theorem polcon2bN

Description: Contraposition law for polarity. (Contributed by NM, 23-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2polss.a A=AtomsK
2polss.p ˙=𝑃K
Assertion polcon2bN KHLXAYAX˙YY˙X

Proof

Step Hyp Ref Expression
1 2polss.a A=AtomsK
2 2polss.p ˙=𝑃K
3 simpl1 KHLXAYAX˙YKHL
4 simpl3 KHLXAYAX˙YYA
5 simpr KHLXAYAX˙YX˙Y
6 1 2 polcon2N KHLYAX˙YY˙X
7 3 4 5 6 syl3anc KHLXAYAX˙YY˙X
8 simpl1 KHLXAYAY˙XKHL
9 simpl2 KHLXAYAY˙XXA
10 simpr KHLXAYAY˙XY˙X
11 1 2 polcon2N KHLXAY˙XX˙Y
12 8 9 10 11 syl3anc KHLXAYAY˙XX˙Y
13 7 12 impbida KHLXAYAX˙YY˙X