Metamath Proof Explorer


Theorem polcon2N

Description: Contraposition law for polarity. (Contributed by NM, 23-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2polss.a A=AtomsK
2polss.p ˙=𝑃K
Assertion polcon2N KHLYAX˙YY˙X

Proof

Step Hyp Ref Expression
1 2polss.a A=AtomsK
2 2polss.p ˙=𝑃K
3 1 2 2polssN KHLYAY˙˙Y
4 3 3adant3 KHLYAX˙YY˙˙Y
5 1 2 polssatN KHLYA˙YA
6 5 3adant3 KHLYAX˙Y˙YA
7 1 2 polcon3N KHL˙YAX˙Y˙˙Y˙X
8 6 7 syld3an2 KHLYAX˙Y˙˙Y˙X
9 4 8 sstrd KHLYAX˙YY˙X