Metamath Proof Explorer


Theorem polssatN

Description: The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polssat.a A=AtomsK
polssat.p ˙=𝑃K
Assertion polssatN KHLXA˙XA

Proof

Step Hyp Ref Expression
1 polssat.a A=AtomsK
2 polssat.p ˙=𝑃K
3 eqid PSubSpK=PSubSpK
4 1 3 2 polsubN KHLXA˙XPSubSpK
5 1 3 psubssat KHL˙XPSubSpK˙XA
6 4 5 syldan KHLXA˙XA