Metamath Proof Explorer


Theorem polsubN

Description: The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses polsubsp.a A=AtomsK
polsubsp.s S=PSubSpK
polsubsp.p ˙=𝑃K
Assertion polsubN KHLXA˙XS

Proof

Step Hyp Ref Expression
1 polsubsp.a A=AtomsK
2 polsubsp.s S=PSubSpK
3 polsubsp.p ˙=𝑃K
4 eqid lubK=lubK
5 eqid ocK=ocK
6 eqid pmapK=pmapK
7 4 5 1 6 3 polval2N KHLXA˙X=pmapKocKlubKX
8 hllat KHLKLat
9 8 adantr KHLXAKLat
10 hlop KHLKOP
11 10 adantr KHLXAKOP
12 hlclat KHLKCLat
13 eqid BaseK=BaseK
14 13 1 atssbase ABaseK
15 sstr XAABaseKXBaseK
16 14 15 mpan2 XAXBaseK
17 13 4 clatlubcl KCLatXBaseKlubKXBaseK
18 12 16 17 syl2an KHLXAlubKXBaseK
19 13 5 opoccl KOPlubKXBaseKocKlubKXBaseK
20 11 18 19 syl2anc KHLXAocKlubKXBaseK
21 13 2 6 pmapsub KLatocKlubKXBaseKpmapKocKlubKXS
22 9 20 21 syl2anc KHLXApmapKocKlubKXS
23 7 22 eqeltrd KHLXA˙XS