Metamath Proof Explorer


Theorem poleloe

Description: Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015)

Ref Expression
Assertion poleloe B V A R I B A R B A = B

Proof

Step Hyp Ref Expression
1 brun A R I B A R B A I B
2 ideqg B V A I B A = B
3 2 orbi2d B V A R B A I B A R B A = B
4 1 3 bitrid B V A R I B A R B A = B