Metamath Proof Explorer
		
		
		
		Description:  A poset ordering is reflexive.  (Contributed by NM, 11-Sep-2011)
       (Proof shortened by OpenAI, 25-Mar-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | posi.b |  | 
					
						|  |  | posi.l |  | 
				
					|  | Assertion | posref |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | posi.b |  | 
						
							| 2 |  | posi.l |  | 
						
							| 3 |  | posprs |  | 
						
							| 4 | 1 2 | prsref |  | 
						
							| 5 | 3 4 | sylan |  |