Metamath Proof Explorer


Theorem poss

Description: Subset theorem for the partial ordering predicate. (Contributed by NM, 27-Mar-1997) (Proof shortened by Mario Carneiro, 18-Nov-2016)

Ref Expression
Assertion poss ABRPoBRPoA

Proof

Step Hyp Ref Expression
1 ssralv ABxByBzB¬xRxxRyyRzxRzxAyBzB¬xRxxRyyRzxRz
2 ss2ralv AByBzB¬xRxxRyyRzxRzyAzA¬xRxxRyyRzxRz
3 2 ralimdv ABxAyBzB¬xRxxRyyRzxRzxAyAzA¬xRxxRyyRzxRz
4 1 3 syld ABxByBzB¬xRxxRyyRzxRzxAyAzA¬xRxxRyyRzxRz
5 df-po RPoBxByBzB¬xRxxRyyRzxRz
6 df-po RPoAxAyAzA¬xRxxRyyRzxRz
7 4 5 6 3imtr4g ABRPoBRPoA