Metamath Proof Explorer


Theorem prdsbasmpt

Description: A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y=S𝑠R
prdsbasmpt.b B=BaseY
prdsbasmpt.s φSV
prdsbasmpt.i φIW
prdsbasmpt.r φRFnI
Assertion prdsbasmpt φxIUBxIUBaseRx

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y=S𝑠R
2 prdsbasmpt.b B=BaseY
3 prdsbasmpt.s φSV
4 prdsbasmpt.i φIW
5 prdsbasmpt.r φRFnI
6 1 2 3 4 5 prdsbas2 φB=xIBaseRx
7 6 eleq2d φxIUBxIUxIBaseRx
8 mptelixpg IWxIUxIBaseRxxIUBaseRx
9 4 8 syl φxIUxIBaseRxxIUBaseRx
10 7 9 bitrd φxIUBxIUBaseRx