Metamath Proof Explorer


Theorem predeq1

Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion predeq1 R=SPredRAX=PredSAX

Proof

Step Hyp Ref Expression
1 eqid A=A
2 eqid X=X
3 predeq123 R=SA=AX=XPredRAX=PredSAX
4 1 2 3 mp3an23 R=SPredRAX=PredSAX