Metamath Proof Explorer


Theorem preq12d

Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012)

Ref Expression
Hypotheses preq1d.1 φA=B
preq12d.2 φC=D
Assertion preq12d φAC=BD

Proof

Step Hyp Ref Expression
1 preq1d.1 φA=B
2 preq12d.2 φC=D
3 preq12 A=BC=DAC=BD
4 1 2 3 syl2anc φAC=BD