Metamath Proof Explorer


Theorem preqsn

Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 12-Jun-2022)

Ref Expression
Hypotheses preqsn.1 AV
preqsn.2 BV
Assertion preqsn AB=CA=BB=C

Proof

Step Hyp Ref Expression
1 preqsn.1 AV
2 preqsn.2 BV
3 id AVAV
4 2 a1i AVBV
5 3 4 preqsnd AVAB=CA=CB=C
6 1 5 ax-mp AB=CA=CB=C
7 eqeq2 B=CA=BA=C
8 7 pm5.32ri A=BB=CA=CB=C
9 6 8 bitr4i AB=CA=BB=C